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Abstract: DDOS is a type of DOS attack where multiple compromised systems -- which are usually infected with
a Trojan -- are used to target a single system causing a Denial of Service (DoS) attack. Victims of a DDoS attack
consist of both the end targeted system and all systems maliciously used and controlled by the hacker in the
distributed attack. This work proposes a Back Propagation Neural Network (BPNN) prevention engine to flag
known and unknown attacks from genuine traffic. We have intensively trained the algorithm with real life cases
and attacking scenarios (patterns) based on the existing DDoS tools. The more we train the algorithm with up-to-
date patterns (latest known attacks), the further we increase the chances of detecting unknown attacks,
considering that over training is avoided. This is because BPNN algorithm learns from scenarios and detects
zero-day patterns that are similar to what it was trained with. This design is implemented in the MATLAB

environment.
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I. INTRODUCTION

It seems that we are witnessing a tremendous growth of
Internet threats. The emergence of multiple worms [1]
and viruses that are propagating by exploiting the
numerous vulnerabilities that are discovered day by
day, transforms poorly administered computers into a
powerful army in the electronic battlefield. The
compromised hosts can be remotely controlled to
perform various malicious activities like Spam
forwarding [2], hosting illegal web sites or Distributed
Denial of Service attacks 1. Malicious users that have
under their control a large number of compromised
hosts are able to launch packet floods towards a victim
host or a router with a single command. These packet
floods may aim at bandwidth starvation, at overloading
a system’s IP stack or a router’s flow based switching
module and are able to make the victim devices
unreachable - denying thus service to legitimate users.

The detection of Distributed Denial of Service attacks is
vital for the security management of edge networks,

especially of university networks and ADSL providers.
Poorly administered workstations and servers of
academic networks and non-sophisticated users’ home
computers become the main sources of such attacks.
Detection of DDoS attacks near their sources is the
most effective approach that has been slightly explored
[3], [4]. However, detection is hard even near the victim
-destination network- , especially if we monitor non-
congested links, which is the case in an overprovisioned
ISP backbone. In this case link saturation can’t provide
us with an anomaly signature. In the same time it would
be economically questionable to expect ISP’s to
perform DDoS detection on many, small and highly
utilized customer links and not just at a few points of
the over-provisioned backbone.

Given the current technology constraints, the research
community has failed to offer to network
administrator’s reliable and feasible detection methods.
The problem is that our sensors have to cope with high
data rates which impose constraints on the detection
algorithm’s complexity. This way, complex processing
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techniques like power spectral density estimation [5],
clustering algorithms [6] or wavelet analysis [7] are
promising but not readily available since they are based
on hard to measure metrics (at least in real time) and
they involve high processing overhead.

This proposed includes the detection of DDOS attack
using genetic algorithm and prevention will be done
using neural network.

Figure 1.1: DDOS Attack in Cloud Network

Il. DDOS ATTACKS

Denial of Service (DoS) is a class of attacks where an
attacker makes some computing or memory resource
too busy or too full to handle legitimate requests, thus
denying legitimate users access to a machine [6]. There
are different ways to launch DoS attacks:

» Abusing the computers legitimate features.
 Targeting the implementations bugs.
» Exploiting the system’s misconfigurations.

DoS attacks are classified based on the services that an
attacker renders unavailable to legitimate users.

1. RELATED WORK

Xiao et al. [12] present an approach that uses
information theory and GA to detect abnormal network
behaviors. Based on the mutual information between
network features and the types of network intrusions, a
small number of network features are closely identified
with network attacks. Then a linear structure rule is
derived using the selected features and a GA. The use of
mutual information reduces the complexity of GA, and
the single resulting linear rule makes intrusion detection
efficient in real-time environment. However, the
approach considers only discrete features.

Li [13] present to detect network anomalous using
Genetic  Algorithm. The detection rates may be
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increased due to quantitative features inclusion.
However, no implementation results are available.

Bridges [14] Implemented a method to detect both
anomalies and network misuses by combing Genetic
Algorithm™s and Fuzzy data mining technologies. In
this method select the most significant network features
and locate the best possible parameters of the fuzzy
function by using Genetic Algorithm.

Crosbie [15] proposed a methodology to detect network
anomalies using Genetic Programming (GP) and
multiple agent technology. When the agents are not
properly initialized, the training process takes long time.
The communication among small autonomous agents is
still a problem.

Selvakani [16] Applied Genetic Algorithm to generate
rules for training the IDS. Rules are generated for only
Smurf (DoS) attack and Warzemaster (R2L) attack.
This performance of this methodology detection rate is
low. This survey shows that the proposed Intrusion
Detection models for R2L, U2R, Probe attacks get low
detection rates using KDDCup dataset. This paper
studies two types of attacks for each category i.e., DoS,
R2L, U2R and Probe. Observed all the features in the
KDDCUP Dataset to detect the attacks.

Lu [17] Develop a method to derive a set of
classification rules by using Genetic Programming (GP)
with help of past data of network. In this method using
GP the practical implementation is more difficult due to
the system required more data or time.

IV. PROPOSED WORK

The network attacks can be divided in four groups of
DDoS, R2L, U2R, and Probe. In the designed IDS, the
system can detect DDoS -type attacks, in very high
detection rate. In fact, this kind of IDS is responsible
for the detection attacks, which can be included in
DDoS category. In order to design this type of IDS, we
identified DDoS attacks and designed a separate IDS
for each one to detect that specific attack. In general,
considering the designed IDS, the system will detect
DoS attacks in the network (if there is any).

The basic methodology is as follows:

1. During initial phase, feature extraction is done
using genetic algorithm and this is done for
detection of DDOS attack.

2. For prevention of DDOS attack: During a
training/learning phase, the input traffic is
source-separated, and fed into a NN, whose

WwWWw.ijatca.com 15



Ankita Mangotra et al., International Journal of Advanced Trends in Computer Applications (IJATCA)

parameters are iteratively re-estimated and
established.

3. During the testing phase, the probability of a
streamed, source-separated packet sequence of
length n is estimated using the trained NN

4. If the probability of the packet sequence is
lesser than a threshold probability, then the
sequence is declared abnormal.

The experiment were based on the following:
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1. During the learning phase, normal traffic was

separated at three levels, based on layer 3/4 protocols

used, based on destination information, and based on

source information. Each stream is subjected to a HMM

for the purpose of learning. Therefore, multiple HMMs
are trained with the normal traffic.

2. During the testing phase, streaming is done again on
all the three levels mentioned above, and the probability
of the packet sequence in the stream coming from
corresponding trained HMM is estimated, and flagged
as anomaly if it falls below a threshold.
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Figure 1-2 Flowchart
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VI. RESULTS DISCUSSION
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Above figure, shows the rate of change of the BER

Figure 4: Rate of change of error rate

Figure 6: Rate of change of throughput

versus rate of change of SNR when energy and speed  Above, figure shows the rate of change of the
are only the constraints.

throughput versus change in iteration . It shows that
throughput has been increased by 20 %.
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CONCLUSION

Acrtificial Intelligence methods are gaining the most
attention at present regarding its ability to learn and
evolve, which makes them more precise and efficient in
facing the huge number of unpredictable attacks.

Hence in this proposed work methodology based on
Genetic Algorithm for detection of Distributed Denial of
Service is proposed. The proposed approach aims at
gaining maximum detections of the DDoS attacks with
minimum false positive rate. Then prevention of DDOS
attack will takes place with Neural Network.
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