
Jyotsna Agnihotri et al., International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 1, Number 5, May - 2015, pp. 39-45

ISSN: 2395-3519

www.ijatca.com 39

International Journal of Advanced Trends in

Computer Applications
www.ijatca.com

A Study of Various Metaheuristic Techniques used

for Software Testing
Jyotsna Agnihotri

1
, Vijay Kumar

2

1Jyotsna Agnihotri

Department of Computer Science

Chandigarh University

Gharuan, India

jyotsnaagni@gmail.com

2Vijay Kumar

Department of Computer Science

Chandigarh University

Gharuan, India

Vijaykumar_nrw@gmail.com

Abstract: In today’s competitive world every software company wants to deliver high quality software. So software testing

is essential task as it will locate errors and ensure error free software. Basically software testing is a process of validating

software with requirements and testing for bugs however it is a labor intensive and very costly task. So automation of testing

is needed as exhaustive testing is not possible. A properly generated test suite has a strong impact on the efficiency and

effectiveness of software testing. In recent years, metaheuristic techniques are the focus of researchers. This paper

enlightens on different metaheuristic techniques that are used for optimizing test suite. A brief description of genetic

algorithm, particle swarm optimization, ant colony algorithm, artificial bee colony algorithm, algorithm is given along with

its pseudo code to facilitate the implementation of these algorithms. This study will be beneficial for both practitioners and

researchers.

Keywords: Evolutionary algorithms, Ant colony optimization, Artificial bee colony optimization, Particle swarm

optimization, Genetic algorithm.

1. Introduction

Software testing is essential to ensure quality in

software industry. Software testing is done to evaluate

how well an application confirms to its specifications.

Software testing is divided into three stages: first is

generation of test data, second is application of data to

the software being tested and evaluation. However the

main goal of software testing is to generate an optimal

test suite that reveals as many errors as possible

according to its test adequacy criterion. Industries have

spent a lot of time and cost in testing their software.

Testing mainly depends on the test cases i.e. inputs

taken for the software. Finding that kind of test cases is

itself a difficult task. Randomly generated test cases

takes a lot of time to test the software.

Evolutionary algorithms are rather new techniques

which are emerging these days as difficulties are

associated with using mathematical solutions on large

scale problems. NP-hard problems are often difficult to

solve with these techniques or by using dynamic

programming. These techniques are stochastic (random)

techniques that mimic the natural behavior of species

and generate useful solutions to optimization and search

problems.

1.1 Meta heuristic techniques

Evolutionary algorithms are also called metaheuristic

techniques. Meta heuristic techniques can often find

good solution with less computational effort. Meta

heuristic is a higher level procedure which is designed

to find, generate or select a lower level procedure that

may provide a sufficiently good solution to an

optimization problem especially with incomplete or

imperfect information with limited computation

capacity. [4]

Jyotsna Agnihotri et al., International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 1, Number 5, May - 2015, pp. 39-45

ISSN: 2395-3519

www.ijatca.com 40

1.2 Meta heuristic techniques and software

testing

Search based optimization techniques have been applied

to a number of software engineering activities from the

requirement engineering to the maintenance.[4] The

application of software testing has witnessed intense

activity in 2004. There is a number of optimization

techniques used for software testing. But no matter

which technique is used it is the fitness function that

captures the critical information.[19] The first

technique introduced was genetic algorithm which was

developed by Darwinian. However GA requires long

time for processing to find a near optimal solution. In

an attempt to improve quality of solutions other

algorithms have been developed particularly to avoid

being trapped in local minima. Ant Colony

Optimization algorithm is inspired by swarm

intelligence introduced by Marco Dorgio in 1991 which

is one of the first technique to give optimize solutions.

ACO can be used in dynamic applications. Artificial

Bee Colony algorithm was introduced by Karabora in

2005. It mimics the behavior of bees which are

classified as search bees, onlooker bees and scout bees.

ABC has the ability to get out of local minima and

performs better for local search. Particle Swarm

Optimization algorithm was developed by Kennnedy

and Eberhart [15]. PSO is inspired by the behavior of

birds flocking and the way by which they find unknown

destinations, their food sources and their habitat.

2. LITERATURE SURVEY

In this paper the author James Andrews et.al [13] have

discussed Nighthawk, a system which uses genetic

algorithm to find parameters used for randomized unit

testing. Feature subset selection tool is used to access

the size and content of the representations which is

helpful in reducing the size of representations. This GA

achieves 100% of results in only 10% of time.

In this paper Vivek Kothari, Satish Chandra [19]

discussed a modification to the artificial bee colony

algorithm which reduces its variations by applying

genetic operators to the ABC algorithm. In this

crossover phase is used to provide better solutions as it

helps solutions to persist in the population.

In this paper the author Soma Sekhara Babu Lama et.al

[12] discussed generation of feasible independent paths.

Artificial bee colony algorithm is used for generation of

test data where parallel behavior of the bees makes

generation of test data efficient and faster and path is

selected based on the priority of all edge coverage

criteria. This technique helps to solve local optima

problem.

In this paper the author Sanjay Singla et.al [15]

presents a technique which is based on genetic

algorithm and particle swarm optimization algorithm

that is used to automatically generate the test data for

data flow coverage. A number of programs of different

size and complexity are used to analyze performance

which shows its coverage ratio is more.

In this paper the author [21] give focus on generation of

test data. A state based software testing is applied by

creating a directed dynamic graph which is used to

represent the software system under test. The ACO

algorithm developed is efficient and generates optimal

test data.

In this paper the author Praveen Ranjan Srivastava et.al

[10] presents approach which generates test sequence in

order to obtain the complete software coverage. Take

state diagram of given system under test then find

cyclomatic complexity. Decision is based on feasible

transition set; pheromone test; heuristic set ; visited

status set; probability set. This paper shows that the

whole path is covered.The result is also compared with

the genetic algorithm it shows that ACO is better in

path coverage.

In this paper the author Tai-hoon Ki et.al [22] have

discussed the application of genetic algorithm in

software testing. This algorithm works on control flow

graph. Assigning weights to edges of CFG; distribution

of weights; Fitness value is calculated; probability is

calculated; crossover is done; mutation is done. In this

GA outperforms the exhaustive search and local search

techniques by examining the most critical paths first a

more effective way to approach testing is obtained

which in turn helps to refine effort and cost estimation

in the testing phase.

In this paper the author Praveen Ranjan Srivastava et.al

[23] have discussed prioritization in ABC which is

presently done using factors like code complexity,

application feasibility and implementation complexity.

It computes the probability value of the sources then

traverse the food sources by desolated. The scouts

search area for exploring new food sources. The best

food source found so far is retained in the memory. In

the proposed ABC approach, optimized test suite is

generated for each independent path of the program

where each path will have two types of data.

In this paper the author Sapna Varshney et.al [24]

proposes a novel approach based on genetic algorithm

to generate test data for a program. Its performance is

evaluated based on data flow dependencies of a

program by comparing with random testing. Based on

the experimental results on a number of C programs, it

shows that the proposed approach outperforms random

testing in test data generation and optimization.

Jyotsna Agnihotri et al., International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 1, Number 5, May - 2015, pp. 39-45

ISSN: 2395-3519

www.ijatca.com 41

In this paper the author Adisrikanth et.al [25] proposes

a test case optimization approach using artificial bee

colony optimization algorithm. This method generates

optimal number of test cases based on the cyclomatic

complexity find on the basis of paths. It guarantees full

path coverage and chances of falling into local optimum

solution are low.

In this paper D.Jeya Mala et.al [26] gives a automated

software test optimization framework based on

intelligent behavior of honey bees. The proposed system

is evaluated based on the coverage based test criteria

and its results are compared with sequential ABC,

genetic algorithm and random testing. Results shows

that ABC outperforms the other approaches in test suite

optimization.

3. ALGORITHMS

I. Genetic algorithms

Genetic algorithms were discovered by Holland [20].

Genetic algorithms create population of individuals

which is represented by chromosomes where

chromosome is composed of genes and a gene is a pair

of a name and an integer. These chromosomes are

candidate solutions to given problem. Fitness function

of chromosomes is calculated. Selective chromosomes

form a search space and these represent the value of

solutions which is encoded in the chromosomes. After

this chromosomes undergo a process of evolution i.e.

selection, mutation and recombination.

Parent gene(X)

Parent gene(Y)

 Generate random range—(eg. 2-4)

 Fig. 1 Crossover operation to generate offspring

Crossover and mutation operators are used to form a

new population. Crossover operator swaps the genetic

information but mutation operator changes population

slightly either by individual level or on bit by bit basis.

The GA in this example is a steady state i.e. an

offspring replaces the worst chromosome only if it is

better than it.

Genetic Algorithms are best in finding solutions to

complex problems. [1]

Fig. 2

Pseudo code for genetic algorithm is as follows:

Strengths:

 Parallel search eliminate undesirable components.

 Mutation operator helps in avoiding stagnation

around local minima.

 Likelihood of obtaining a global optimum solution.

Weakness:

 Processing time is high.

 External optimization is there which provides a

single solution.

Begin

 Generate random population of P solutions

(chromosomes);

 for each individual I P: calculate fitness (i);

 For i= 1 to number of generations;

 Randomly select an operation (crossover or

mutation);

 If crossover;

 Select two parents at random ia and ib;

 Generate an offspring ic= crossover (ia and ib);

 Else if mutation;

 Select one chromosome i at random;

 Generate an offspring ic = mutate(i);

 End if

 Calculate the fitness of the offspring ic;

 If ic is better than the worst chromosome than

replace the worst chromosome by ic;

 Next i;

 Check if termination= true;

End

X1 X2 X3 X4 X5 XN

Y1 Y2 Y3 Y4 Y5 YN

Offspring X1 Y2 Y3 Y4 X2 X2

Jyotsna Agnihotri et al., International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 1, Number 5, May - 2015, pp. 39-45

ISSN: 2395-3519

www.ijatca.com 42

 Its results are less stable.

 These are not sufficient to converge to a solution.

 Memorization is weak.

II. Artificial Bee Colony Algorithm

Bee Colony System was identified by sato and

Hagiwara in 1997. Bee Colony Optimization was

introduced by Lucic and Teo dorovic in 2001 and

Artificial Bee Colony algorithm was introduced by

Karabora in 2005. ABC is different from BCO because

in ABC we only use scouts and foragers in equal

proportion as initial population. Bees are used as agents

who explore the minimum set of test cases. Half of the

bees will initially start foraging with randomly selected

test cases. Now bees will ass new test cases on explored

path if adding test case increases its fault detection

capacity.

After adding one or more test case the bees return to

their hive and exchange information.

Fig. 3

Pseudo code for artificial bee colony algorithm is as

below:

Strengths:

 Ability to get out of local minima

 Requires a few parameters

 Efficient for multivariable and multimodal

optimization

 Results are stable

Weaknesses:

 Pre knowledge required

 Slow in sequential processing

III. Ant Colony Optimization Algorithm

Ant Colony Optimization algorithm is based on ant’s

behavior and their communication by means of

pheromone trail, it enables them to find shortest path

first. Ants initially search their surroundings and then

where to go ants decide by using pheromone

information. An isolated ant moves essentially at

random, when encountering a previous trail they detect

it and decide whether to follow it or not. Where the

more ants are following a trail the more that trail gets

attractive. This process can be characterized by a

positive feedback loop. The quantity of pheromone laid

while returning to colony detecting food source depends

on quantity and quality of food.

Pseudo code for Ant colony optimization algorithm is as

follows:

1: Initialize the population of solutions

2: Evaluate the population

3: cycle=1

4: repeat

5: Produce new solutions υi,j for the employed bees by

using (2) and evaluate them

6: Apply the greedy selection process

7: Calculate the probability values Pi,j for the solutions

xi,j by (1)

 8: Produce the new solutions υi,j for the onlookers from

the solutions xi,j selected depending on Pi,j and evaluate

them

 9: Apply the greedy selection process

10: Determine the abandoned solution for the scout, if

exists, and replace it with a new randomly produced

solution xi,j by (3)

 11: Memorize the best solution achieved so far

12: cycle=cycle+1

13: until cycle=MCN

Begin

Initialize the pheromone trail and parameters;

Generate population of m solutions;

For each individual ant k Em ;

Calculate fitness (k);

For each ant determine its best position;

Determine the best global ant;

Update the pheromone trail;

Check if termination= true;

End

Jyotsna Agnihotri et al., International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 1, Number 5, May - 2015, pp. 39-45

ISSN: 2395-3519

www.ijatca.com 43

Strengths:

 Feedback mechanism is easy

 Results are comprehensible

 Adaptive in nature

 Robust and scalable

 Useful in dynamic application

 Weaknesses:

 Search efficiency is low

 Search pheromone is scarce

 Processing time is more

4. Particle Swarm Optimization

Algorithm

A particle is analogous to a chromosome in genetic

algorithms.

PSO does not create new birds from parents as opposed

to GAs. The birds only evolve their social behavior and

accordingly their movement towards a destination.

Suppose the solution space of the problem is D-

dimensional and the size of particle swarm is m,

respectively. Then each particle is defined by two D-

dimension vectors, one denotes the particle’s location

and the other represents its velocity. The location of a

particle is a potential solution of the problem, so we

should define a fitness function according to the

problem. The principle for the definition of the fitness

function is the higher fitness, the better solution. Each

particle is able to memorize two items, namely the

historical best position of itself and the best position of

the whole population. Denote the location, velocity,

historical best position of the ith particle as Xi, Vi, Pi,

and the best position of the whole population as Pg,

respectively. Here i=1, 2, …, m, and all of the above

four vectors are D-dimensional.

The PSO approach begins with an initial particle

population, and the locations and the velocities of which

are both randomly produced. Then the velocities and

locations are updated according to the following two

equations:

vid = w×vid + c1 r1 (pid - xid) + c2 r2 (pgd - xid)

(1) xid = xid + vid (2)

 where i=1,2,…,m, d=1,2,…,D, w is a inertial

parameter, c1 and c2 are learning rates, r1 and r2 are

random real values in interval [0,1],

 vid ∈ [-vmax, vmax], and vmax is a designated value.

When the fitness of the best population location reaches

a designated value or after running a defined upper limit

iteration number, the program will output the best

solution and terminate.

Figure

Pseudo code for Particle swarm optimization algorithm

is as follows:

Strengths:

 Faster convergence

 Greater diversity

 Update themselves

 They have memory

 Useful in non linear optimization problems

Weaknesses:

 Not suitable for combinatorial problems

CHALLENGES

There are so many challenges in testing software in time

and cost constraint environment. The most eminent

challenge faced in software testing is generating an

optimized test suite which helps in finding error in less

time and path cover is more. As only an appropriate test

suite will result into an optimal solution. There are

many algorithms and techniques available for software

testing but selection of best technique according to

Begin

Generate random population of N solutions;

For each individual I E N ;

Calculate fitness(i);

Initialize the value of the weight factor, w;

For each particle

Set pbest as the best solution for the particle I;

If fitness (i) is better than the pbest;

Pbest(i)= fitness (i);

End;

For gbest as the best fitness of all particles;

For each particle;

Calculate particle velocity;

Update particle velocity;

End

Update the value of the weight factor w;

Check if termination = true;

End

Jyotsna Agnihotri et al., International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 1, Number 5, May - 2015, pp. 39-45

ISSN: 2395-3519

www.ijatca.com 44

requirement is needed. Metaheuristic techniques provide

better solutions. Genetic algorithm and Artificial Bee

Colony algorithms are best in providing optimal

solutions so these can be used in software test suite

optimization.

5. CONCLUSION

In this paper, four optimization algorithms were

presented. These are genetic algorithm, ant colony

optimization, artificial bee colony, particle swarm

optimization. The benefits and limitations of these

techniques are also discussed. In terms of solution

quality and success rate Particle swarm optimization

algorithm was found to perform better than other

algorithms, while in terms of processing time it is

second best algorithm. ABC algorithm gives good

results on multimodal problems.ACO algorithm

technique is good for solving test case selection and

prioritization.

REFERENCES

[1] Marco Dorigo, Senior Member, IEEE, and Luca

Maria Gambardella, Member, IEEE, “Ant Colony

System: A Cooperative Learning Approach to the

Traveling Salesman Problem”, IEEE

TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, April 1997.

[2] Dervis Karaboga, Bahriye Basturk, “A powerful and

efficient algorithm for numerical function optimization:

artificial bee colony (ABC) algorithm”, Springer

Science, April 2007.

[3] David Martens, Manu De Backer, Raf Haesen,

Student Member, IEEE, Jan Vanthienen, Monique

Snoeck, and Bart Baesens, “Classification With Ant

Colony Optimization” IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION, Oct 2007.

[4] Mark Harman, “The Current State and Future of

Search Based Software Engineering”, Future of

Software Engineering, IEEE, 2007.

[5] Raluca Lefticaru, Florentin Ipate, “Automatic State-

Based Test Generation Using Genetic Algorithms”,

Ninth International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing, 2008.

[6] Praveen Ranjan Srivastava1 and Tai-hoon Kiml,

“Application of Genetic Algorithm in Software

Testing”, International Journal of Software

Engineering and Its Applications Vol. 3, No.4, October

2009 .

[7] Xiaohu Shi1,2, Yanwen Li3, Haijun Li4, Renchu

Guan1, Liupu Wang1 and Yanchun Liang, “An

Integrated Algorithm Based on Artificial Bee Colony

and Particle Swarm Optimization”, Sixth International

Conference on Natural Computation, IEEE 2010.

[8] Kewen Li, Zilu Zhang, Jisong Kou, “Breeding

Software Test Data with Genetic- Particle Swarm

Mixed Algorithm”, JOURNAL OF COMPUTERS,

FEBRUARY 2010.

[9] B. Akay and D. Karaboga “A modified artificial bee

colony algorithm for real-parameter optimization”

Information Sciences, 2010.

[10] Praveen Ranjan Srivastava, Km Baby, “Automated

Software Testing Using Metahurestic Technique Based

on An Ant Colony Optimization,” Electronic System

Design (ISED), 2010 International Symposium, Dec.

2010.

[11] Qurat-ul-ann Farooq, Muhammad Zohaib Z. Iqbal,

Zafar I Malik, Matthias Riebisch, “A Model-Based

Regression Testing Approach for Evolving Software

Systems with Flexible Tool Support”, 17th IEEE

International Conference and Workshops on

Engineering of Computer-Based Systems, 2010.

[12] Soma Sekhara Babu Lama, M L Hari Prasad Rajub,

Uday Kiran Mb, Swaraj Chb, Praveen Ranjan

Srivastavb, a*, “Automated Generation of Independent

Paths and Test Suite Optimization Using Artificial Bee

Colony”, International Conference on Communication

Technology and System Design, 2011.

[13] James H. Andrews, Tim Menzies and Felix C.H. Li,

“Genetic Algorithms for Randomized Unit Testing”,

IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, February, 2011.

[14] YXiaohui Yan1,2, Yunlong Zhu1, Wenping Zou1, “A

Hybrid Artificial Bee Colony Algorithm for Numerical

Function Optimization, IEEE, 2011.

[15] Sanjay Singla, Dharminder Kumar, H M Rai and Priti

Singla1, “A Hybrid PSO Approach to Automate Test

Data Generation for Data Flow Coverage with

Dominance Concepts”, International Journal of

Advanced Science and Technology Vol. 37, December,

2011.

[16] Mohammad Daghaghzadeh, Morteza Babamir, “An

ABC Based Approach to Test Case Generation for

BPEL Processes”, 3rd International Conference on

Computer and Knowledge Engineering, November

2013.

[17] Vani Maheshwari, Unmukh Dutta, “Comparative

Study of Different Modified Artificial Bee Colony

Algorithm with Proposed ABC Algorithm”,

International Journal of Soft Computing and

Engineering , January 2014.

[18] Mustafa Servet Kiran, Ahmet Babalik, “Improved

Artificial Bee Colony Algorithm for Continuous

Optimization Problems”, Journal of Computer and

Communications, March 2014.

[19] Vivek Kothari, Satish Chandra, “The Application of

Genetic Operators in the Artificial Bee Colony

Algorithm”, IEEE International Conference on Recent

Advances and Innovations in Engineering, May, 2014.

[20] Jogi John, Mangesh Wanjari, “Performance Based

Evaluation of New Software Testing Using Artificial

Jyotsna Agnihotri et al., International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 1, Number 5, May - 2015, pp. 39-45

ISSN: 2395-3519

www.ijatca.com 45

Neural Network” , International Journal of Science and

Research, May 2014.

[21] Praveen Ranjan Srivastava1 and Tai-hoon Ki,

“Application of Genetic Algorithm in Software Testing

”, IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, October 2009.

[22] Praveen Ranjan Srivastava and Tai-hoon Kim,

“Developing optimization algorithm using artificial bee

colony system” “International Journal of Software

Engineering and Its Applications” October 2011.

[23] Sapna Varshney, Monica Mehrotra, “ Automated

software test data generation for data flow

dependencies using genetic algorithm”, IJARCSE,

February,2014

