

Analysis and Design of Collaborative Recommender System for Map Routing

Gurbinder Kaur¹, Vijay Kumar², Atul Kumar³, Harpreet Kaur Virk⁴

¹**Gurbinder Kaur**

PG Student

Department of Computer Science & Engg.
Chandigarh University, Gharuan, Mohali (Punjab)
gudduaujla@gmail.com

²**Vijay Kumar**

Assistant Professor

Department of Computer Science & Engg.
Chandigarh University, Gharuan, Mohali (Punjab)
vijaykumar_nrw@hotmail.com

³**Atul Kumar**

PG Student

Department of Computer Science & Engg.
Chandigarh University, Gharuan, Mohali (Punjab)
thakur.atul225@gmail.com

⁴**Harpreet Kaur Virk**

PG Student

Department of Computer Science & Engg.
Chandigarh University, Gharuan, Mohali (Punjab)
kaurhp.17@gmail.com

Abstract: In the past few years, with the proliferation of mobile devices people are experiencing frequent communication and information exchange. For instance, in the context of people's visits, it is often the case that each person carries out a smart phone, to get information about nearby places. When one visits some location, an application will recommend useful information according to its current location, preferences and past visits. In this paper we address the key features and development of a map routing application. This application is based on collaborative filtering. The basic purpose of this application is to provide an accurate recommendations for hospitals, ATMs etc on the basis of ratings in map route by using (Collaborative filtering System) CBF_System. This approach has its roots in information filtering and retrieval research. The proposed system has also taken care of the cold start problem for new users.

Keywords: Recommender System, Collaborative Filtering.

1. Introduction

When an individual travels to a new city for vacation or business or is simply relocating to a fresh setting, the person needs a method to receive information on the routes to utilize and sites to see. Asking a local dweller can yield good recommendations for destinations: from parks to restaurants to museum to trails. Visiting for any travel websites or from books

or brochures can also encourage ideas of sites to visit in a new place [2]. In today's world tourists have also many options with their mobile devices to receive recommendations about a city's attraction and sites as well as to navigate the routes to find the location of their interest. Tools like Bing Maps and

Google Maps have robust systems to recommend routes between locations as well as information

about those places. While these applications provide a necessary tool for the unknowing traveller and have polished and intuitive interfaces, there are still elements that are missing from these systems.

The purpose of this paper was to build an application for mobile devices that combines Google Maps with the idea of recommending parameters like food, hospitals, ATMs etc according to users' current location, preferences and past visits by using collaborative filtering technique.

We address the development and the key features of a map routing with a mobile application which is based on collaborative filtering. Collaborative Filtering (CBF_System) is a popular recommendation algorithm that bases its predictions and recommendations on the ratings or behaviour of other users in the system. The fundamental assumption behind this method is that other users' opinions can be selected and aggregated in such a way as to provide a reasonable prediction of the active users' preference. Intuitively, they assume that, if users agree about the quality or relevance of some items, then they will likely agree about other items- if a group of users likes the same things as X, then X is likely to like the things they like which X hasn't yet seen. There are other methods for performing recommendation, such as finding items similar to the items liked by a user using textual similarity in metadata [17].

The basic purpose of this application is to provide the accurate recommendations for the parameters like hospitals, ATMs, food etc in map routing by using CBF_System in which results is shown in the route on the basis of ratings In which route selected parameter get highest ratings (after calculating its average) that route will be selected and shown in the map. CBF_System basically shows the results which are popular and also on the other hand identify similar users and recommend what similar users like. The system suggests routes based on both the user's past actions, ratings and its current location.

The proposed system also provides solution to the cold start problem for the new items. Cold start problem is very common in recommender systems. Cold start problem occur when new user is added and system do not know what to recommend to that new user. The proposed system also has taken care of this problem.

The remainder of this paper is organized as follows. Section II briefly reviews the related work of CBR_System and work done in this field. Section III provides methodology used by us to recommend the routes in the map along with the accurate results according to the selected parameters. Section IV

provides discussion and future work. Finally, Section V ends the paper with some conclusion remarks.

2. Related Work

In this Section, we briefly review the key features of existing map routing applications, proposed in the past few years. The TouristEye service [9, 10] is available as a Web application, with mobile clients for iPhone and Android. It offers a wide range of points of interest organized by categories such as attractions, entertainment and restaurants. Registered users can mark touristic places as visited, provide a comment stating their degree of satisfaction, and they can describe their visits, by taking notes and photos in the mobile application. Users can plan their trips, composed by points of interest, and the map service is used to display routes between these locations. This service has an integrated recommender system such that new points of interest are automatically displayed to the user.

Bradley Hayden Bahls [2] proposed the recommender system to build an application for a mobile device that combines Google Maps with the idea of recommending routes that are beautiful, user-targeted, and safe in an unfamiliar city. This application gives path recommendations based upon not only the destinations, but also the route itself. Users can utilize this system to explore new areas of cities and offer feedback to build routes to their needs.

Artem Umanets et al. [3] proposed a Guide me application who will recommend useful information to the user according to their current location, preferences and past visits. It's a mobile and web application provides consultation, publication and recommendation of touristic locations. Each user may consult places of touristic interest; receive suggestions of previously unseen touristic places according to other users' recommendations, and to perform its own recommendations.

Peter Aksenov et al. [4] proposed the concept of "smart routing"-a personalised recommender system for cultural tourism that takes into account the varying nature of tourists' dynamic needs and preferences. Three level of activity specification are considered in this.1) a program level, i.e. selecting a set of relevant points of interests (POIs) to be included into the tour, 2) a schedule level, i.e. arranging the selected POIs into a sequence, 3) a travel route level, i.e. determining a set of multimodal trips to be made between the POIs included in the tour.

The GuidePal Offline City Guides [11] allows for users to download varied content for different cities and to consult information regarding coffee shops, restaurants and other attractions. In order to list the existing points of interest, the user selects the desired city and category. Afterwards, a description for the points of interest is shown.

The mTrip travel guide service [12] is mainly used for big cities such as Berlin and Paris, among others. It is available as a separate application for each one of the major cities and allows people to consult information regarding points of interest without an Internet connection. Users can schedule or create guides for the cities by providing the detailed information on the touristic attractions which they plan to visit. Each point of interest is accompanied by a description, a photo, opening hours, prices, as well as the comments and ratings from other travellers. It includes augmented reality tool to preview the points of interest near the user's location.

The Triposo service [13] offers similar features to those of mTrip. However, it includes much more countries as well as smaller cities. When one picks the country to visit, the download of information regarding the points of interest for that country starts immediately, allowing to consult this information later in offline mode. For big cities, it provides special information regarding the city guide about all sights, a list of restaurants and extended nightlife options. It also provides a travel dashboard with currency converter, weather info, and useful native language phrases.

Foursquare [14] is a service that allows registered users to "check-in" at their current location. It provides Web and mobile applications for iPhone, Android and Blackberry. Users with special permission can contribute with new locations, such as coffee shops, sights and restaurants. The service was created in 2009, in March 2011 a recommender system was added for suggesting places that user might like, based on their past actions. In 2013, a new version was published allowing users to consult the sights nearby their current location.

Collaborative filtering used in the field of recommender system is criticized for various reasons. Some authors claim that collaborative filtering would be ineffective in domains where more items than users exist. Others believe that users would not be spending time for explicitly rating research papers [19].

Several authors via research papers documented the benefits of use of collaborative tagging. Vander Wal[22] and Mathes [23] have discussed the potential benefits of tagging for personal information management. Vander Wal [22] has observed that in tagging systems there exists a powerful tool, allowing users to index their information resources with their own keywords [24].

Nan Zheng, Qiudan Li [20] proposed the recommender system based on tags and time information. They show empirically using data from a real world data set that tag and time information can well express users taste and we also show that better performances can be achieved if such information is integrated into CF [20].

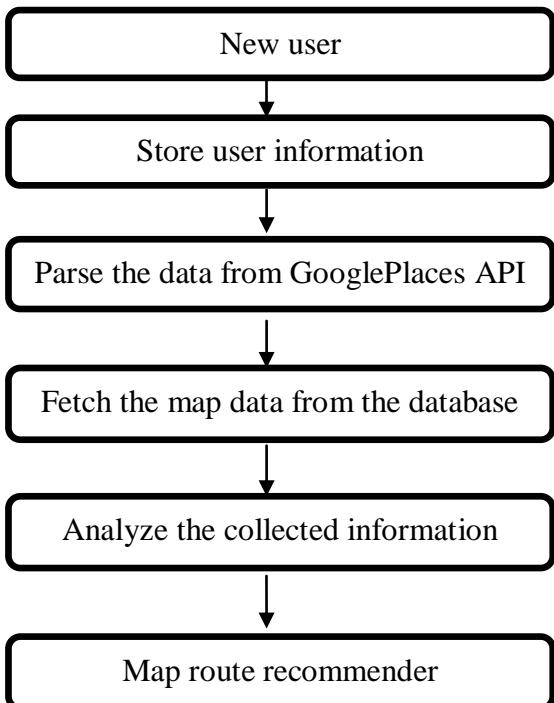
Another collaborative filtering recommender system based on tag information is proposed by author[21]. This paper explores the utilization of tagging information to provide the related recommendations. This is based on the distinctive three dimensional relationships among users, tags and items, a new user profiling and similarity measure method is proposed. Author experiments suggest that the approach proposed is better than the traditional collaborative filtering recommender systems using only rating data [21].

Several author also proposed the incorporation of different filtering techniques with meta-heuristic techniques to provide accurate and precise results. Punam Bedi, Ravish Sharma [25] has proposed the trust based recommender system using ant colony optimization. They incorporated the collaborative filtering technique with the ant colony optimization.

After reviewing the current research on map routing we concluded that there are several issues associated with implementation of a content-based filtering system. First, terms can either be assigned automatically or manually. When terms are assigned automatically a method has to be chosen that can extract these terms from items. Second, the terms have to be represented such that both the user profile is based on seen items and can make recommendations based on this user profile[18].Content filtering approach is mostly used with the text documents. We are proposing a collaborative recommender system for map routing which provides relevant recommendations to the users on the basis of ratings. The adoption of Collaborative filtering has some advantages i.e. no item data needed, domain independent, look outside the preferences of the user, low memory and CPU time[1].

3. Proposed Work

This paper proposed the CBF_System for map routing based on collaborative filtering in which we tried to build an application which provides accurate recommendations to user according to their needs and on the basis of highest ratings (popularity).


3.1 Problem Formulation

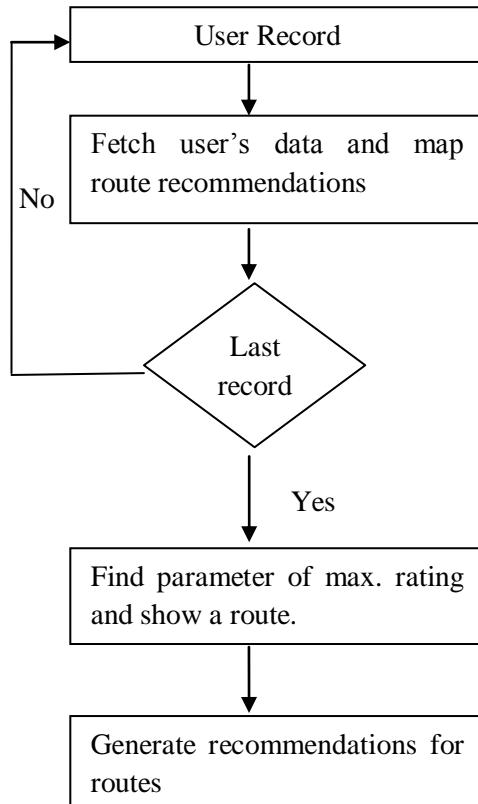
Collaborative filtering recommender system recommend items on the basis of rating by predicting (filtering) the users preferences on new items by collecting taste information from many users (collaborative) [1].

We use CBF_System to provide accurate recommendations to user in map routing on the basis of ratings. In particular, various candidate items are compared with items previously rated by the user and the best-matching items are recommended [1] according to users preferences, past visits and current locations.

3.2 Proposed Content Approach

The proposed system is map routing application based on content based recommender system for better recommendations. Fig 2: Describes the process of CBR_System.

Fig 2: Flow chart of proposed technique


The various phases of the proposed approach are described below.

1) New user: For the new user, the system requests to register him/her for an account to gather his preferences.

2) Map database: Collect the information for recommendations in map such as routes, shortest path, ratings, reviews of different users, parameters like hospitals, restaurants, doctor, cafe etc.

3) Information collected: Analyze the collected information by filtering component that whether it is likely to be of interest to the active user by comparing features in the item representations to those items stored in the user profile.

4) Map route recommender: This phase recommend routes to the user and use following steps:

Fig 3: Flow chart for map route recommendations

4. Discussion and Future Work

To find out related content is very difficult task in current scenario where there are huge amount of data is stored in the databases. Recommender systems are solution to this problem and attracting researchers to explore this area in past few years. This paper also tries to solve the problem for recommending routes in map. In this paper we propose an application which recommend accurate route to the user according to their needs.

Approach	Item data	User data	Recommend	Pros	cons
Collaborative	-	Profile of items the user has liked	Item liked by a user with similar user data	-no item data needed - domain independent - outside the box - model-based: low CPU-time	-need enough data -cold start -gray sheep - stability v/s plasticity - memory-based: lots of memory and high CPU-time.

Wrong recommendations assigned to the user tend to decrease the efficiency of the system but this problem is reduced by using CBF_System and optimal recommendations are provided to the user. This paper also have taken care of the cold start problem for new items where we do not know how to recommend that new item or what to recommend to that new user added to the system.

Overview of this approach is shown above.

This system can be further improved by combining collaborative and content filtering techniques to provide accurate recommendations on the basis of collaborative tagging.

5. Conclusion

This paper proposed the system to recommend items to new users by collecting taste information of new users (preferences) and comparing their tastes with many users. The application gives path recommendations based on parameters selected by user on the basis of highest ratings. The system is functional as well as user-friendly. The simplicity of

the design prevents any confusion. Layouts and menu are fluid and easy to use. The system becomes self-learning as more people use the system and gives their knowledge to the system and ultimately its capability to return related research parameters helps to solve users' problems

References

- [1] F Ricci, L Rokach, B Shapira, "Introduction to recommender systems handbook." Springer US, 2011.
- [2] Bahls, BradleyH, "Pedestrian Pal: A Route Recommendation System for the Android Mobile Phone" Theses, Dissertations, Professional Paper, Paper737. 2011.
- [3] Artem Umanets "GuideMe-A tourist Guide with a Recommender System and Social Interaction" Conference on Electronics, Telecommunications and Computers-CETC, ELSVIER (407-414) 2014.
- [4] Peter Aksenov, Astrid Kemperman and Theo Arentze., "Toward personalised and dynamic cultural routing: a three-level approach" 12th International Conference on Design and Decision Support Systems in Architecture and Urban Planning, DDS, ELSVIER (257-269) 2014.
- [5] Content Based Recommender System entry in Wikipedia: http://en.wikipedia.org/wiki/Content_Based_RS.
- [6] Yansen Wang, "Google Map Integration", Science Direct 2013.
- [7] J.Delgado, "Content-based collaborative information filtering: actively learning to classify and recommend documents,"IEEE1999.
- [8] N.J.Belkin and W.B. Croft, "Filtering and information retrieval: two sides of the same coin,"IEEE 1992.
- [9] J.Escribano and A.Camus.La guia de viajes inteligente que aprende de ti y tus amigos,November2012. www.slideshare.net/betabee/rs/touristeye
- [10] Tourist Eye, Inc, www.touristeye.com.TouristEye Web Application, 2012.
- [11] GuidePal, Inc, guidepal.com.GuidePal Home, 2012
- [12] mTrip, Inc, www.mTrip.com.Intelligent Travel Guides, 2011.
- [13] Triposo, Inc, www.triposo.com.Triposo Travel Guides, 2012
- [14] Foursquare, Inc, foursquare.com.Building a recommendation engine, Foursquare style, March 2011
- [15] G.Linden, B.Smith and J.York, Amazon.com Recommendations, Industry Report: IEEE Internet Computing, 2003 p.76-80
- [16] A.Almeida, B.Coelho, and C.Martins.Intelligent hybrid architecture for tourism services. In max Bramer, editor, IFIP AI, volume 331 of Advances in Information and Communication Technology, pages 205-214.Springer, 2010.
- [17] Michael D.Ekstrand,John T.Riedl and Joseph A.Konstan,"Collaborative Filtering Recommender

Systems", Foundation trends in human-computer interaction, Vol.4.No.2(2010)81-173,2011

[18] "Content based filtering" <http://recommender-systems.org/content-based-filtering/>

[19] Gipp, Bela, Jöran Beel, and Christian Hentschel. "Scienstein: A research paper recommender system." In International Conference on Emerging Trends in Computing, pp. 309-315. 2009.

[20] Zheng, Nan, and Qiudan Li. "A recommender system based on tag and time information for social tagging systems." Expert Systems with Applications 38, no. 4 (2011): 4575-4587.

[21] Liang, Huizhi, Yue Xu, Yuefeng Li, and Richi Nayak. "Collaborative filtering recommender systems using tag information." In Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT'08. IEEE/WIC/ACM International Conference on, vol. 3, pp. 59-62. IEEE, 2008.

[22] Vander Wal, T., "Explaining and Showing Broad and Narrow Folksonomies", [Vanderwal.net,http://www.vanderwal.net/random/entrysel.php?blog=1635](http://www.vanderwal.net/random/entrysel.php?blog=1635),2005

[23] Mathes, A., "Folksonomies – Cooperative Classification and Communication Through Shared Metadata", Adam Mathes.com,USA <http://adammathes.com/academic/computermediatedcommunication/folksonomies.pdf>, 2004

[24] Bhatia, Kapil. "Collaborative Tagging for Software Reuse." Computer Science\ & Engineering Department, Thapar Institute of Engineering\ & Technology, Deemed University (2006).

[25] Bedi, Punam, and Ravish Sharma. "Trust based recommender system using ant colony for trust computation." Expert Systems with Applications 39, no. 1 (2012): 1183-1190

Author Profile

Gurbinder Kaur received the B.E. degree in Computer Science and Engineering from Global Institute of Management and Engineering Technology in 2012, respectively. She is now pursuing M.E from Chandigarh University.