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Abstract: Endoscopy procedures are essential in detecting and preventing colorectal cancer, primarily through 

identifying and removing polyps. Despite their critical role, polyps are often missed during routine colonoscopies 

due to factors such as physician fatigue or suboptimal viewing angles. Automated, real-time computer-aided 

detection (CAD) systems offer a solution to enhance polyp detection rates and accuracy during endoscopic 

procedures. However, real-time implementation in live feeds presents unique challenges, requiring a balance 

between computational speed and detection precision to minimize disruption to clinical workflows. This study 

addresses these challenges by introducing an optimized detection framework specifically designed to detect 

polyps in real-time in live endoscopic feeds. Using advanced detection techniques tailored to the endoscopy 

setting, we achieve both high precision and speed, critical for supporting endoscopists in real-time. Our results 

highlight the potential of real-time polyp detection systems to aid early colorectal cancer prevention by 

enhancing polyp detection rates without impeding clinical performance. 
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I. Introduction 

Colorectal cancer (CRC) remains a leading cause of 

cancer-related deaths worldwide, with high mortality 

rates primarily due to late diagnosis. Polyps, or 

abnormal tissue growths within the gastrointestinal 

tract, serve as a precursor to CRC, making their 

detection and removal crucial in early-stage cancer 

prevention. Among various screening methods, 

colonoscopy is considered the most effective for polyp 

detection, as it allows direct visualization of the 

gastrointestinal tract. However, the success of 

colonoscopy relies heavily on the skill of the 

endoscopist, with studies reporting that up to 20% of 

polyps are missed during routine procedures. These 

limitations highlight the need for automated, real-time 

polyp detection systems capable of assisting 

endoscopists in live settings, reducing human error, 

and ensuring comprehensive examinations. 

In recent years, computer-aided detection (CAD) 

systems have gained traction in the medical imaging 

field, particularly in tasks requiring speed and 

accuracy. Recent advancements in deep learning have 

made it possible to develop CAD systems that support 

real-time detection. However, in the case of live 

endoscopic feeds, balancing processing speed with 

detection accuracy remains a significant challenge. In 

this study, we introduce a real-time polyp detection 

system specifically tailored for endoscopic feeds, 

demonstrating its ability to enhance detection rates 

without compromising the efficiency required in 

clinical applications. 

II. Literature Survey 

Automated polyp detection has been an active topic for 

research over the last two decades and considerable 

work has been done to develop efficient methods and 

algorithms. Earlier works were especially focused on 

polyp color and texture, using handcrafted descriptors-

based feature learning [1], [2]. More recently, methods 

based on Convolutional Neural Networks (CNNs) have 

received significant attention [3], [4], and have been 

the go to approach for those competing in public 

challenges [5], [6]. 

Wang et al. [7] designed algorithms and developed 

software modules for fast polyp edge detection and 

polyp shot detection, including a polyp alert software 

system. Shin et al. [8] have used region-based CNN for 

automatic polyp detection in colonoscopy videos and 

images. They used Inception ResNet as a transfer 

learning approach and post-processing techniques for 

reliable polyp detection in colonoscopy. Later on, Shin 

et al. [9] used generative adversarial network [10], 

where they showed that the generated polyp images are 

not qualitatively realistic; however, they can help to 

improve the detection performance. Lee et al. [11] used 

YOLO-v2 [12], [13] for the development of polyp 

detection and localization algorithm. The algorithm 

produced high sensitivity and near real-time 

performance. Yamada et al. [14] developed an artificial 

intelligence system that can automatically detect the 
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sign of CRC during colonoscopy with high sensitivity 

and specificity. They claimed that their system could 

aid endoscopists in real-time 40498 detection to avoid 

abnormalities and enable early disease detection. 

III. Methodology 
We have used the Kvasir-SEG [17] for detection, 

localisation, and segmentation tasks. This dataset is the 

outcome of an initiative for open and reproducible 

results. It contains 1000 polyp images acquired by 

high-resolution electromagnetic imaging system, i.e., 

ScopeGuide, Olympus Europe, their corresponding 

masks and bounding box information. The images and 

their ground truths can be used for the segmentation 

task, whereas the bounding box information provides 

an opportunity for the detection task.  

Detection methods aim to predict the object class and 

regress bounding boxes for localisation, while 

segmentation methods aim to classify the object class 

for each pixel in an image. Ground truth masks for 

segmentation task are shown in 2nd column while 

corresponding bounding boxes for the detection task 

are in 3rd column. This section describes the baseline 

methods for detection, localisation and segmentation 

methods used for the automated detection and 

segmentation of polyp in the Kvasir-SEG dataset. 

A. DETECTION AND LOCALISATION 

BASELINE METHODS 

Detection methods consist of input, backbone, neck, 

and head. The input can be images, patches, or image 

pyramids. The backbone can be different CNN 

architectures such as VGG16, ResNet50, ResNext-101, 

and Darknet. The neck is the subset of the backbone 

network, which could consist of FPN, PANet, and Bi-

FPN. The head is used to handle the pre- diction boxes 

that can be one stage detector for dense predic- tion 

(e.g., YOLO, RPN, and RetinaNet [50]), and two-stage 

detector with the sparse prediction (e.g., Faster R-CNN 

[51] and RFCN [52]). Recently, one stage methods 

have attracted much attention due to their speed and 

ability to obtain optima accuracy. This has been 

possible because recent networks utilise feature 

pyramid networks or spatial-pyramid pool- ing layers 

to predict candidate bounding boxes which are 

regressed by optimising loss functions. 

In this paper, we use EfficientDet [53] which uses Effi- 

cientNet [54], as the backbone architecture, bi-

directional feature pyramid network (BiFPN) as the 

feature network, and shared class/box prediction 

network. Additionally, we also use Faster R-CNN [51], 

which uses region proposal net- work (RPN), as the 

proposal network and Fast R-CNN [55] as the detector 

network. Moreover, we use YOLOv3 [56] that utilises 

multi-class logistic loss (binary cross-entropy for 

classification loss and mean square error for regres- 

sion loss) modeled with regularizers such as objectness 

pre- diction scores. Furthermore, we also used 

YOLOv4 [57], which utilises an additional bounding 

box regressor based on the Intersection over Union 

(IoU) and a cross-stage par- tial connections in their 

backbone architecture. Additionally, YOLOv4 allows 

on fly data augmentation, such as mosaic and cut-mix. 

RetinaNet [50] takes into account the data driven prop- 

erty that allows the network to focus on ‘‘hard’’ 

samples for improved accuracy. The easy to adapt 

backbones for feature extraction at the beginning of the 

network provides the opportunity to experiment with 

deeper and varied archi- tectures such as ResNet50, 

and ResNet101 for RetinaNet and 53 layered 

Darknet53 backbone for YOLOv3 and YOLOv4 

architecture. 

B. SEGMENTATION BASELINE METHODS 

In the past years, data-driven approaches using CNNs 

have changed the paradigm of computer vision 

methods, includ- ing segmentation. An input image can 

be directly be fed to convolution layers to obtain 

feature maps, which can be later upsampled to predict 

pixel-wise classification provid- ing object 

segmentation. Such networks learn from available 

ground truth labels and can be used to predict labels 

from other similar data. A Fully Convolutional 

Network (FCN) based segmentation was first proposed 

by Long et al. [58] that can be trained end-to-end. 

Ronneberger et al. [59] modified and extended the 

FCN architecture to a UNet architecture. The UNet 

consist of an analysis (encoder) and a synthesis 

(decoder) path. In the analysis path of the network, 

deep fea- tures are learnt, whereas in the synthesis path 

segmentation is performed on the basis of the learnt 

features. 

Pyramid Scene Parsing Network (PSPNet) [60] 

introduced a pyramid pooling module aimed at 

aggregating global con- text information from different 

regions which are upsampled and concatenated to form 

the final feature representation. A final per-pixel 

prediction is obtained after a convolution layer. For 

feature extraction, we have used the ResNet50 

architecture pretrained on imageNet. Similar to the 

UNet architecture, DeepLabV3+ [61] is an encoder-

decoder network. However, it utilizes separable 

convolutions and spatial pyramid pooling for fast 

inference and improved accuracy. Atrous convolution 

controls the resolution of features com- puted and 

adjust the receptive field to effectively capture multi-
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scale information. In this paper, we have used an out- 

put stride of 16 for both encoder and decoder networks 

of DeepLabV3+ and have experimented on both 

ResNet50 and ResNet101 backbones. 

 

 
     Figure: CNN Model Architecture 

 

ResUNet [62] combines the capabilities of residual 

neural networks and UNet. The updated ResUNet 

architecture is called ResUNet++ [3]. Atrous Spatial 

Pyramid Pooling (ASPP), attentiveness block, and 

squeeze-and-excite block are some of its extra layers. 

These extra layers aid in the learning of deep features 

that can better predict pixels for tasks involving object 

segmentation. DoubleU-Net [43] is made up of two 

UNet architecture modifications. The first encoder it 

employs is VGG-19 pretrained on ImageNet [63]. 

VGG-19, which is comparable to UNet [64], was 

chosen primarily because it is a lightweight model. The 

ASPP block and the squeeze and-excite block are the 

extra parts of the DoubleUNet. High-Resolution 

Network (HRNet) [65] continually exchanges 

information across the resolution while maintaining 

high-resolution representation convolution in parallel. 

One of the newest and most often used approaches in 

the literature is this one. Additionally, we trained the 

model using UNet with ResNet34 as the backbone 

network so that it could be compared to other cutting-

edge semantic segmentation networks. 

The hyperparameters for each of the benchmark 

techniques based on semantic segmentation are 

displayed in Table 4. The table shows that the baseline 

approaches have a significant number of trainable 

parameters. The network becomes complex due to a 

large number of trainable parameters, which lowers the 

frame rate. Therefore, creating a lightweight, effective 

architecture that can offer improved performance and a 

faster frame rate is crucial. In light of this, we suggest a 

novel architecture called ColonSegNet that can reduce 

training and inference time by requiring a small 

number of training parameters. The section below 

contains more information on the architecture. 

C. COLONSEGNET 

This encoder-decoder's primary components are the 

squeezing and excitation network [67] and residual 

block [66]. Compared to other baseline networks like 

U-Net [59], PSPNet [60], DeepLabV3+ [61], and 

others, the network is made to have a very small 

number of trainable parameters. The suggested 

architecture is a highly lightweight network that 

achieves real-time performance by using fewer 

trainable parameters. 

Two encoder blocks and two decoder blocks make up 

the network. The input image is transferred to the 

decoder when the encoder network has learnt to extract 

all of the required information from it. Two skip 

connections from the encoder make up each decoder 

block. Simple concatenation is used in the first, and a 

transpose convolution is used in the second skip 

connection to add multi-scale features to the decoder. 

In the form of a segmentation mask, these multi-scale 

characteristics assist the decoder in producing more 

semantic and significant information.  

The first encoder receives the input image and uses a 3 

x 3 strided convolution between two residual blocks. 

After this layer, there is a 2x2 max-pooling. In this 

case, the spatial dimensions of the output feature map 

are lowered to one-fourth of the original image. A 3 × 

3 strided convolution sits between two residual blocks 

in the second encoder. 

The first decoder employs a stride value of 4, which 

expands the feature map's spatial dimensions by 4, and 

begins with a transpose convolution. Likewise, the 

second decoder increases the spatial dimensions by two 

by using a stride value of two. The network then 

proceeds to a residual block and a straightforward 

concatenation. The second skip connection is then 

concatenated with it, and a residual block follows once 

more. The binary segmentation mask is produced by 

passing the output of the last decoder block through a 

sigmoid activation function and a 1 × 1 convolution. 
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i) DATA AUGMENTATION 

Supervised learning techniques are data-hungry and 

need a lot of data to produce dependable and effective 

models. Such training data must be obtained manually 

through data collection, curation, and annotation, 

which requires a large investment of time and money 

from computational scientists as well as clinical 

specialists.  

One popular method for computationally increasing a 

dataset's training sample count is data augmentation. 

We employ fundamental augmentation methods for our 

DL models, including random rotation, random scale, 

random cropping, vertical and horizontal flipping, and 

random rotation. The photos used in each experiment 

are shrunk to a fixed 512 × 512 size after being 

normalised. The image is normalised by dividing it by 

the standard deviation and subtracting it from the 

mean. 

IV. Results 
i) EVALUATION METRICS 

This section, defines the evaluation metrics used to 

measure the performance of the CNN model.   

 True Positive (TP):  The number of positive 

samples that are identified correctly by the classifier 

means that sample falls in polyp class and classified as 

such.  

 False Positive (FP): The number of negative 

sample that are wrongly identified in a positive 

category, means that sample falls in non-polyp class, 

but classified as polyp class.  

 True Negative (TN): The number of negative 

sample that are identified correctly in its category. 

Samples are non-polyp class and classified as such.  

 False Negative (FN): The number of positive 

samples that are wrongly identified in another category 

means that the sample falls in polyp class, but 

classified as non-polyp class.  

Confusion Matrix is a table utilized to describe the 

overall performance of the classification model on test 

data whose actual values are known. The relation 

between true positive, false positive, true negative and 

false negative are shown in Table 3.2.  

 

      Table: Confusion Matrix 

 

Recall (REC):  Calculates the proportion of all true 

positive samples from cases that are actually positive.  

Also it referred to as sensitivity and true positive rate.  

Precision (PREC): Calculates the proportion of all 

true positive samples from cases that are predicated as 

positive.  

F1 score (F1): Another accuracy measure, also 

referred F-measure, utilized to seek the relation 

between precision and recall by counting the weighted 

average. 

ROC curve: The receiver operating characteristics 

is a two-dimensional graph in which created by 

plotting the false positive rate FPR on the x-axis 

against true positive rate TPR represents the y-axis at 

various threshold settings. 

Specificity (SPEC): Calculates the proportion of all 

true negative samples from cases that are actually 

negative, also referred to false positive rate. 

 

 
Figure: Evaluation of Model 

 

ii) EXPERIMENTAL RESULTS 

The experimental results shown in the image 

illustrate the performance of the proposed model in 

detecting polyps during colonoscopy. The outputs are 

divided into three parts: the original image, the 

predicted mask, and the polyp detection 

visualization. 

1. Original Image: This is the raw colonoscopy 

frame input to the model. It showcases the 

gastrointestinal tract, with a visible polyp 

present in the center of the frame. 

2. Predicted MaskThe mask highlights the 

region of interest (ROI) corresponding to the 

detected polyp. The clear and accurate 

segmentation of the polyp validates the 

model’s ability to isolate relevant structures 

effectively. 

3. Polyp Detection Visualization: This frame 

overlays the bounding box and depth 

estimation onto the original image. The 

bounding box tightly encloses the polyp, 

demonstrating the localization accuracy of the 

model. The depth annotation indicates the 

model's potential in providing additional 

diagnostic insights, such as size or proximity. 

The results validate the effectiveness of the model 

initialization, demonstrating robust segmentation and 

detection capabilities in complex medical imaging 

scenarios. This performance is critical for assisting 

clinicians in early detection and accurate diagnosis of 

 Actual Class  

Polyp  Non-polyp  

Predicated 

Class  

Polyp  True 

positive  

False 

positive  Non-

polyp  

False 

negative  

True 

negative  
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colorectal polyps. 

 
Figure: Detection of Polyp 

 

V. Conclusion  
 

In this project, we developed a deep learning model for 

the automatic classification of colorectal polyps in 

colonoscopy images using Convolutional Neural 

Networks (CNNs). The primary objective was to 

design a model capable of distinguishing between 

polyp and non-polyp images, and later classifying 

various types of polyps based on their features. 

The project began with a study of colorectal polyps, 

their significance in cancer screening, and the existing 

methods for automatic polyp classification. We 

explored different machine learning approaches, 

particularly focusing on CNNs, which are well-suited 

for image classification tasks. The CNN architecture, 

with its multiple convolutional layers, allowed the 

model to automatically learn discriminative features 

from the colonoscopy images. 

Our approach involved a single CNN-based model, 

which was trained from scratch on the Kvasir-SEG 

dataset. The image preprocessing phase included patch 

extraction and data augmentation to increase the 

robustness of the model. The model was trained to 

classify images into two categories: polyp and non-

polyp. By using the original Kvasir-SEG dataset, which 

only contained polyp images, we classified them 

accordingly into polyp and non-polyp categories, 

focusing on accuracy. 

The proposed model achieved impressive results, 

with an overall classification accuracy of 98.4%, 

alongside a precision, sensitivity, and F1-score of 98%. 

This high performance demonstrates the efficacy of 

using CNNs for this task. Furthermore, the model’s 

architecture is flexible and can be adapted in the future 

for other medical imaging tasks, providing a 

foundation for further development. 

FUTURE WORK 

Although the results of this project are promising, 

there are several potential improvements and directions 

for future research: 

1. Classifying Multiple Polyp Types: The 

current model distinguishes between polyp and 

non-polyp images. In future work, we aim to 

extend the classification to include different 

types of polyps, such as non-malignant (Type 

1), neither malignant nor non-malignant (Type 

2A, 2B), and malignant (Type 3). This would 

broaden the clinical applicability of the model 

by enabling more precise diagnoses. 

2. Expanding the Dataset: A larger and more 

diverse dataset would likely improve the 

model’s performance and generalizability. This 

would also allow the inclusion of additional 

polyp types, such as serrated sessile, 

pedunculated, and tubular polyps. Collecting 

more colonoscopy images and classifying them 

accurately would provide a more 

comprehensive model. 

3. Real-Time Integration with Endoscopy 

Machines: One of the most significant future 

directions is to integrate this model into real-

time endoscopy systems. By installing our 

software in endoscopy machines, the model 

could automatically classify polyps during the 

procedure, providing immediate feedback to 

healthcare professionals and potentially 

improving patient outcomes. 

4. Model Optimization: Further optimization of 

the CNN architecture could improve the 

model’s accuracy and efficiency. This could 

involve experimenting with different network 

depths, layer configurations, and 

hyperparameter tuning to achieve even better 

performance. 

By expanding the dataset, extending the 

classification to multiple polyp types, and integrating 

the model into real-world applications such as 

endoscopy systems, this project has the potential to 

contribute to improved colorectal cancer screening and 

diagnosis. 
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