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Abstract: Endoscopy procedures are essential in detecting and preventing colorectal cancer, primarily through
identifying and removing polyps. Despite their critical role, polyps are often missed during routine colonoscopies
due to factors such as physician fatigue or suboptimal viewing angles. Automated, real-time computer-aided
detection (CAD) systems offer a solution to enhance polyp detection rates and accuracy during endoscopic
procedures. However, real-time implementation in live feeds presents unique challenges, requiring a balance
between computational speed and detection precision to minimize disruption to clinical workflows. This study
addresses these challenges by introducing an optimized detection framework specifically designed to detect
polyps in real-time in live endoscopic feeds. Using advanced detection techniques tailored to the endoscopy
setting, we achieve both high precision and speed, critical for supporting endoscopists in real-time. Our results
highlight the potential of real-time polyp detection systems to aid early colorectal cancer prevention by
enhancing polyp detection rates without impeding clinical performance.
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I.Introduction

Colorectal cancer (CRC) remains a leading cause of
cancer-related deaths worldwide, with high mortality
rates primarily due to late diagnosis. Polyps, or
abnormal tissue growths within the gastrointestinal
tract, serve as a precursor to CRC, making their
detection and removal crucial in early-stage cancer
prevention. Among various screening methods,
colonoscopy is considered the most effective for polyp
detection, as it allows direct visualization of the
gastrointestinal tract. However, the success of
colonoscopy relies heavily on the skill of the
endoscopist, with studies reporting that up to 20% of
polyps are missed during routine procedures. These
limitations highlight the need for automated, real-time
polyp detection systems capable of assisting
endoscopists in live settings, reducing human error,
and ensuring comprehensive examinations.

In recent years, computer-aided detection (CAD)
systems have gained traction in the medical imaging
field, particularly in tasks requiring speed and
accuracy. Recent advancements in deep learning have
made it possible to develop CAD systems that support
real-time detection. However, in the case of live
endoscopic feeds, balancing processing speed with
detection accuracy remains a significant challenge. In
this study, we introduce a real-time polyp detection
system specifically tailored for endoscopic feeds,
demonstrating its ability to enhance detection rates
without compromising the efficiency required in

clinical applications.

Il. Literature Survey

Automated polyp detection has been an active topic for
research over the last two decades and considerable
work has been done to develop efficient methods and
algorithms. Earlier works were especially focused on
polyp color and texture, using handcrafted descriptors-
based feature learning [1], [2]. More recently, methods
based on Convolutional Neural Networks (CNNs) have
received significant attention [3], [4], and have been
the go to approach for those competing in public
challenges [5], [6].

Wang et al. [7] designed algorithms and developed
software modules for fast polyp edge detection and
polyp shot detection, including a polyp alert software
system. Shin et al. [8] have used region-based CNN for
automatic polyp detection in colonoscopy videos and
images. They used Inception ResNet as a transfer
learning approach and post-processing techniques for
reliable polyp detection in colonoscopy. Later on, Shin
et al. [9] used generative adversarial network [10],
where they showed that the generated polyp images are
not qualitatively realistic; however, they can help to
improve the detection performance. Lee et al. [11] used
YOLO-v2 [12], [13] for the development of polyp
detection and localization algorithm. The algorithm
produced high sensitivity and near real-time
performance. Yamada et al. [14] developed an artificial
intelligence system that can automatically detect the
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sign of CRC during colonoscopy with high sensitivity
and specificity. They claimed that their system could
aid endoscopists in real-time 40498 detection to avoid
abnormalities and enable early disease detection.

I11.Methodology

We have used the Kvasir-SEG [17] for detection,
localisation, and segmentation tasks. This dataset is the
outcome of an initiative for open and reproducible
results. It contains 1000 polyp images acquired by
high-resolution electromagnetic imaging system, i.e.,
ScopeGuide, Olympus Europe, their corresponding
masks and bounding box information. The images and
their ground truths can be used for the segmentation
task, whereas the bounding box information provides
an opportunity for the detection task.

Detection methods aim to predict the object class and
regress bounding boxes for localisation, while
segmentation methods aim to classify the object class
for each pixel in an image. Ground truth masks for
segmentation task are shown in 2nd column while
corresponding bounding boxes for the detection task
are in 3rd column. This section describes the baseline
methods for detection, localisation and segmentation
methods used for the automated detection and
segmentation of polyp in the Kvasir-SEG dataset.

A. DETECTION AND
BASELINE METHODS
Detection methods consist of input, backbone, neck,
and head. The input can be images, patches, or image
pyramids. The backbone can be different CNN
architectures such as VGG16, ResNet50, ResNext-101,
and Darknet. The neck is the subset of the backbone
network, which could consist of FPN, PANet, and Bi-
FPN. The head is used to handle the pre- diction boxes
that can be one stage detector for dense predic- tion
(e.g., YOLO, RPN, and RetinaNet [50]), and two-stage
detector with the sparse prediction (e.g., Faster R-CNN
[51] and RFCN [52]). Recently, one stage methods
have attracted much attention due to their speed and
ability to obtain optima accuracy. This has been
possible because recent networks utilise feature
pyramid networks or spatial-pyramid pool- ing layers
to predict candidate bounding boxes which are
regressed by optimising loss functions.

LOCALISATION

In this paper, we use EfficientDet [53] which uses Effi-
cientNet [54], as the backbone architecture, bi-
directional feature pyramid network (BiFPN) as the
feature network, and shared class/box prediction
network. Additionally, we also use Faster R-CNN [51],
which uses region proposal net- work (RPN), as the
proposal network and Fast R-CNN [55] as the detector
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network. Moreover, we use YOLOvV3 [56] that utilises
multi-class logistic loss (binary cross-entropy for
classification loss and mean square error for regres-
sion loss) modeled with regularizers such as objectness
pre- diction scores. Furthermore, we also used
YOLOv4 [57], which utilises an additional bounding
box regressor based on the Intersection over Union
(loU) and a cross-stage par- tial connections in their
backbone architecture. Additionally, YOLOv4 allows
on fly data augmentation, such as mosaic and cut-mix.

RetinaNet [50] takes into account the data driven prop-
erty that allows the network to focus on ‘‘hard”
samples for improved accuracy. The easy to adapt
backbones for feature extraction at the beginning of the
network provides the opportunity to experiment with
deeper and varied archi- tectures such as ResNet50,
and ResNetl01 for RetinaNet and 53 layered
Darknet53 backbone for YOLOv3 and YOLOv4
architecture.

B. SEGMENTATION BASELINE METHODS

In the past years, data-driven approaches using CNNs
have changed the paradigm of computer vision
methods, includ- ing segmentation. An input image can
be directly be fed to convolution layers to obtain
feature maps, which can be later upsampled to predict
pixel-wise  classification  provid- ing  object
segmentation. Such networks learn from available
ground truth labels and can be used to predict labels
from other similar data. A Fully Convolutional
Network (FCN) based segmentation was first proposed
by Long et al. [58] that can be trained end-to-end.
Ronneberger et al. [59] modified and extended the
FCN architecture to a UNet architecture. The UNet
consist of an analysis (encoder) and a synthesis
(decoder) path. In the analysis path of the network,
deep fea- tures are learnt, whereas in the synthesis path
segmentation is performed on the basis of the learnt
features.

Pyramid Scene Parsing Network (PSPNet) [60]
introduced a pyramid pooling module aimed at
aggregating global con- text information from different
regions which are upsampled and concatenated to form
the final feature representation. A final per-pixel
prediction is obtained after a convolution layer. For
feature extraction, we have used the ResNet50
architecture pretrained on imageNet. Similar to the
UNet architecture, DeepLabV3+ [61] is an encoder-
decoder network. However, it utilizes separable
convolutions and spatial pyramid pooling for fast
inference and improved accuracy. Atrous convolution
controls the resolution of features com- puted and
adjust the receptive field to effectively capture multi-
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scale information. In this paper, we have used an out-
put stride of 16 for both encoder and decoder networks
of DeepLabV3+ and have experimented on both
ResNet50 and ResNet101 backbones.
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FEure: CNN Model Architecture

ResUNet [62] combines the capabilities of residual
neural networks and UNet. The updated ResUNet
architecture is called ResUNet++ [3]. Atrous Spatial
Pyramid Pooling (ASPP), attentiveness block, and
squeeze-and-excite block are some of its extra layers.
These extra layers aid in the learning of deep features
that can better predict pixels for tasks involving object
segmentation. DoubleU-Net [43] is made up of two
UNet architecture modifications. The first encoder it
employs is VGG-19 pretrained on ImageNet [63].
VGG-19, which is comparable to UNet [64], was
chosen primarily because it is a lightweight model. The
ASPP block and the squeeze and-excite block are the
extra parts of the DoubleUNet. High-Resolution
Network (HRNet) [65] continually exchanges
information across the resolution while maintaining
high-resolution representation convolution in parallel.
One of the newest and most often used approaches in
the literature is this one. Additionally, we trained the
model using UNet with ResNet34 as the backbone
network so that it could be compared to other cutting-
edge semantic segmentation networks.

The hyperparameters for each of the benchmark
techniques based on semantic segmentation are
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displayed in Table 4. The table shows that the baseline
approaches have a significant number of trainable
parameters. The network becomes complex due to a
large number of trainable parameters, which lowers the
frame rate. Therefore, creating a lightweight, effective
architecture that can offer improved performance and a
faster frame rate is crucial. In light of this, we suggest a
novel architecture called ColonSegNet that can reduce
training and inference time by requiring a small
number of training parameters. The section below
contains more information on the architecture.
C. COLONSEGNET
This encoder-decoder's primary components are the
squeezing and excitation network [67] and residual
block [66]. Compared to other baseline networks like
U-Net [59], PSPNet [60], DeepLabV3+ [61], and
others, the network is made to have a very small
number of trainable parameters. The suggested
architecture is a highly lightweight network that
achieves real-time performance by using fewer
trainable parameters.

Two encoder blocks and two decoder blocks make up
the network. The input image is transferred to the
decoder when the encoder network has learnt to extract
all of the required information from it. Two skip
connections from the encoder make up each decoder
block. Simple concatenation is used in the first, and a
transpose convolution is used in the second skip
connection to add multi-scale features to the decoder.
In the form of a segmentation mask, these multi-scale
characteristics assist the decoder in producing more
semantic and significant information.

The first encoder receives the input image and uses a 3
x 3 strided convolution between two residual blocks.
After this layer, there is a 2x2 max-pooling. In this
case, the spatial dimensions of the output feature map
are lowered to one-fourth of the original image. A 3 x
3 strided convolution sits between two residual blocks
in the second encoder.

The first decoder employs a stride value of 4, which
expands the feature map's spatial dimensions by 4, and
begins with a transpose convolution. Likewise, the
second decoder increases the spatial dimensions by two
by using a stride value of two. The network then
proceeds to a residual block and a straightforward
concatenation. The second skip connection is then
concatenated with it, and a residual block follows once
more. The binary segmentation mask is produced by
passing the output of the last decoder block through a
sigmoid activation function and a 1 x 1 convolution.

wWww.ijatca.com 25



Hemalatha S, International Journal of Advanced Trends in Computer Applications (IJATCA)

i) DATA AUGMENTATION

Supervised learning techniques are data-hungry and
need a lot of data to produce dependable and effective
models. Such training data must be obtained manually
through data collection, curation, and annotation,
which requires a large investment of time and money
from computational scientists as well as clinical
specialists.

One popular method for computationally increasing a
dataset's training sample count is data augmentation.
We employ fundamental augmentation methods for our
DL models, including random rotation, random scale,
random cropping, vertical and horizontal flipping, and
random rotation. The photos used in each experiment
are shrunk to a fixed 512 x 512 size after being
normalised. The image is normalised by dividing it by
the standard deviation and subtracting it from the
mean.

IVV.Results

i) EVALUATION METRICS
This section, defines the evaluation metrics used to
measure the performance of the CNN model.

True Positive (TP): The number of positive
samples that are identified correctly by the classifier
means that sample falls in polyp class and classified as
such.

False Positive (FP): The number of negative
sample that are wrongly identified in a positive
category, means that sample falls in non-polyp class,
but classified as polyp class.

True Negative (TN): The number of negative
sample that are identified correctly in its category.
Samples are non-polyp class and classified as such.

False Negative (FN): The number of positive

samples that are wrongly identified in another category
means that the sample falls in polyp class, but
classified as non-polyp class.
Confusion Matrix is a table utilized to describe the
overall performance of the classification model on test
data whose actual values are known. The relation
between true positive, false positive, true negative and
false negative are shown in Table 3.2.

Table: Confusion Matrix

Actual Class
Polyp Non-polyp
Predicated Polyp True False
Class Non- False True

Recall (REC): Calculates the proportion of all true
positive samples from cases that are actually positive.
Also it referred to as sensitivity and true positive rate.
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Precision (PREC): Calculates the proportion of all
true positive samples from cases that are predicated as
positive.

F1 score (F1): Another accuracy measure, also
referred F-measure, utilized to seek the relation
between precision and recall by counting the weighted
average.

ROC curve: The receiver operating characteristics
is a two-dimensional graph in which created by
plotting the false positive rate FPR on the x-axis
against true positive rate TPR represents the y-axis at
various threshold settings.

Specificity (SPEC): Calculates the proportion of all
true negative samples from cases that are actually
negative, also referred to false positive rate.
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Figure: Evaluation of Model

ii) EXPERIMENTAL RESULTS
The experimental results shown in the image
illustrate the performance of the proposed model in
detecting polyps during colonoscopy. The outputs are
divided into three parts: the original image, the
predicted mask, and the polyp detection
visualization.

1. Original Image: This is the raw colonoscopy
frame input to the model. It showcases the
gastrointestinal tract, with a visible polyp
present in the center of the frame.

2. Predicted MaskThe mask highlights the
region of interest (ROI) corresponding to the
detected polyp. The clear and accurate
segmentation of the polyp validates the
model’s ability to isolate relevant structures
effectively.

3. Polyp Detection Visualization: This frame
overlays the bounding box and depth
estimation onto the original image. The
bounding box tightly encloses the polyp,
demonstrating the localization accuracy of the
model. The depth annotation indicates the
model's potential in providing additional
diagnostic insights, such as size or proximity.

The results validate the effectiveness of the model
initialization, demonstrating robust segmentation and
detection capabilities in complex medical imaging
scenarios. This performance is critical for assisting
clinicians in early detection and accurate diagnosis of
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colorectal polyps.

Predicted Mask
Polyp Detection

Original Image

Figure: Detection of Polyp

V. Conclusion

In this project, we developed a deep learning model for
the automatic classification of colorectal polyps in
colonoscopy images using Convolutional Neural
Networks (CNNs). The primary objective was to
design a model capable of distinguishing between
polyp and non-polyp images, and later classifying
various types of polyps based on their features.

The project began with a study of colorectal polyps,
their significance in cancer screening, and the existing
methods for automatic polyp classification. We
explored different machine learning approaches,
particularly focusing on CNNs, which are well-suited
for image classification tasks. The CNN architecture,
with its multiple convolutional layers, allowed the
model to automatically learn discriminative features
from the colonoscopy images.

Our approach involved a single CNN-based model,
which was trained from scratch on the Kvasir-SEG
dataset. The image preprocessing phase included patch
extraction and data augmentation to increase the
robustness of the model. The model was trained to
classify images into two categories: polyp and non-
polyp. By using the original Kvasir-SEG dataset, which
only contained polyp images, we classified them
accordingly into polyp and non-polyp categories,
focusing on accuracy.

The proposed model achieved impressive results,
with an overall classification accuracy of 98.4%,
alongside a precision, sensitivity, and F1-score of 98%.
This high performance demonstrates the efficacy of
using CNNs for this task. Furthermore, the model’s
architecture is flexible and can be adapted in the future
for other medical imaging tasks, providing a
foundation for further development.

FUTURE WORK

Although the results of this project are promising,
there are several potential improvements and directions
for future research:
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1. Classifying Multiple Polyp Types: The
current model distinguishes between polyp and
non-polyp images. In future work, we aim to
extend the classification to include different
types of polyps, such as non-malignant (Type
1), neither malignant nor non-malignant (Type
2A, 2B), and malignant (Type 3). This would
broaden the clinical applicability of the model
by enabling more precise diagnoses.

2. Expanding the Dataset: A larger and more
diverse dataset would likely improve the
model’s performance and generalizability. This
would also allow the inclusion of additional
polyp types, such as serrated sessile,
pedunculated, and tubular polyps. Collecting
more colonoscopy images and classifying them

accurately  would  provide a  more
comprehensive model.
3. Real-Time Integration with Endoscopy

Machines: One of the most significant future
directions is to integrate this model into real-
time endoscopy systems. By installing our
software in endoscopy machines, the model
could automatically classify polyps during the
procedure, providing immediate feedback to
healthcare  professionals and potentially
improving patient outcomes.

4. Model Optimization: Further optimization of
the CNN architecture could improve the
model’s accuracy and efficiency. This could
involve experimenting with different network
depths, layer configurations, and
hyperparameter tuning to achieve even better
performance.

By expanding the dataset, extending the
classification to multiple polyp types, and integrating
the model into real-world applications such as
endoscopy systems, this project has the potential to
contribute to improved colorectal cancer screening and
diagnosis.
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