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Abstract: As an essential component of conveyor systems, ensuring the integrity of conveyor belts is vital for safe
and efficient operations. Missing bolts can cause equipment failure, operational delays, and safety hazards.
Traditional manual inspections are labor-intensive, inefficient, and prone to errors, especially in harsh
environments like heavy dust or poor lighting. This paper introduces a missing bolt detection system using
YOLOVS, a cutting-edge deep learning algorithm. YOLOVS8's advanced features enable the accurate detection of
missing bolts on conveyor components. The model is trained with annotated images captured under challenging
conditions, including dust, low light, and partial obstructions. The system analyzes real-time video or images from
industrial cameras to locate missing bolts. Detected issues are marked immediately, allowing timely corrective
actions. Field tests show high accuracy and reliability, even in complex conditions. This solution significantly
reduces risks associated with missing bolts and enhances maintenance efficiency. It ensures conveyor system

safety and operational reliability in demanding industrial environments.
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. INTRODUCTION

Conveyor belts play a critical role in industrial
processes, ensuring efficient material transportation and
operational continuity. Missing bolts in conveyor belt
structures can lead to equipment failures, unplanned
downtime, and safety hazards, severely impacting
productivity. According to industry statistics, structural
failures caused by undetected missing bolts are a
significant concern in industrial operations. These issues
highlight the need for an accurate, reliable, and real-
time bolt detection system.

Traditional approaches to detecting missing bolts, such
as manual inspection and metal detectors, have notable
limitations. Manual inspection relies heavily on human
observation, which is prone to fatigue and errors,
especially over long durations and in harsh
environments with low light or heavy dust. While metal
detectors can detect certain anomalies, they struggle
with non-metallic components and cannot localize
missing bolts effectively. Similarly, imaging-based
methods using conventional object detection techniques
provide limited accuracy in complex industrial settings.

The advent of deep learning and computer vision
technologies has paved the way for innovative solutions
in object detection. YOLOVS, as a cutting-edge deep
learning framework, offers outstanding accuracy and
real-time performance, making it ideal for detecting
missing bolts on conveyor belts in industrial
environments. By leveraging YOLOvS8’s advanced
feature extraction capabilities, this paper proposes a

detection method tailored for the industrial domain.

The key contributions of this research are as follows:

1. Proposed Detection System: A bolt detection system
using YOLOvV8 is developed, enabling real-time
detection of missing bolts in conveyor belt structures
with high accuracy.

2. System Design: The detection system incorporates
robust image preprocessing and a streamlined model
architecture to ensure reliable operation in challenging
environments, such as low light, dust, and occlusions.

3. Performance Optimization: The system is optimized
for portable, low-cost hardware setups by reducing
computational overhead while maintaining detection
precision and speed.

Il.  LITERATURE REVIEW

Accurate detection of structural anomalies in conveyor
systems is crucial for ensuring safety and operational
efficiency in industrial environments. Various
approaches have been explored in the past for detecting
structural and material defects, including bolt detection
and other foreign object recognition tasks.

Traditional detection methods, such as manual
inspections, rely on workers visually identifying
anomalies along conveyor belts. While this approach is
simple, it suffers from significant limitations, including
high labor costs, inefficiency, and vulnerability to
human fatigue and environmental factors such as dust
and poor lighting. These drawbacks lead to low
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detection  accuracy, particularly in  industrial
environments where conveyor belts span long distances.

Metal detection techniques have been used to identify
metallic objects such as bolts or scrap iron along
conveyor belts. These systems employ strong magnets
or metal sensors to attract and detect metallic items.
However, they are ineffective in detecting non-metallic
components and fail to localize missing bolts accurately.
Additionally, buried or partially concealed bolts are
often undetectable, limiting the method’s utility.

Ray detection methods, including y-rays and X-rays,
distinguish materials based on their energy absorption
coefficients. While effective for identifying foreign
objects, these techniques are costly, require regular
maintenance, and expose operators to potentially
harmful radiation. These factors restrict their
widespread industrial adoption.

The advent of machine vision technologies has
transformed defect detection by providing high accuracy
and real-time performance. Early applications included
conventional image processing techniques for material
classification and defect identification. For instance,
Zhao et al. [1] developed a coal gangue recognition
system using image processing, while Le et al. [2]
proposed a gray-scale compression method for
identifying material anomalies. These systems
demonstrated potential in structured environments but
struggled with complex industrial conditions involving
dust, poor lighting, and occlusions.

Recent developments in deep learning have significantly
enhanced object detection capabilities. Convolutional
Neural Networks (CNNSs) have been widely adopted for
their ability to extract and process complex features
from images. Zhang et al. [3] introduced a CNN with
attention modules to segment foreign objects from noisy
backgrounds. Although the model achieved high
accuracy, its dependence on GPU resources increased
system cost and complexity. Similarly, Wang et al. [4]
applied an SSDbased video method for detecting
surface-level anomalies, but its performance was
hindered by high computational requirements.

To address these limitations, researchers have proposed
lightweight and efficient detection models. Xiao et al.
[5] designed a model combining RDU-Net with CNN
residual structures to improve accuracy while reducing
computational overhead. Gaurav Saran et al. [6] utilized
multi-modal imaging techniques to enhance detection
robustness but faced challenges in real-time
performance due to high latency.

Building on these advancements, YOLO (You Only
Look Once) frameworks have emerged as state-of-the-
art solutions for real-time object detection. YOLOVS,
the latest in the series, offers exceptional detection
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speed and accuracy while maintaining a compact model
size. Its feature extraction and multi-scale prediction
capabilities make it highly suitable for detecting small
and intricate objects, such as missing bolts on conveyor
belts.

Despite the extensive progress, existing approaches for
conveyor belt inspection often face challenges in
balancing accuracy, real-time performance, and cost-
effectiveness. This research leverages YOLOV8 to
address these challenges, providing a robust and
efficient system for missing bolt detection under
complex industrial conditions.
1. EXISTING SYSTEM

The system for detecting missing bolts on conveyor
belts utilizes synthetic data, domain adaptation, and
advanced machine vision techniques. Synthetic data is
generated using a simulator, annotated for segmentation,
and used to train the YOLOv8s-seg model. A
CycleGAN network addresses the domain gap by
performing style transfer between synthetic and real-
world data. The methodology includes four stages: data
collection and preprocessing, training YOLOv8s-seg on
synthetic data, domain adaptation via CycleGAN, and
fine-tuning the model with style-transferred data. Real-
world data is collected using a 3DPM test rig, capturing
images of conveyor belts with anomalies like reshaped
cables and rocks. These images are processed,
annotated, and formatted for YOLOvV8 segmentation.
The YOLOv8s-seg model, pre-trained on the COCO
dataset, is fine-tuned using 3759 training images and
evaluated on validation and test sets. Training is
conducted over 200 epochs with SGD optimization and
data augmentation techniques to enhance robustness.
The final domain-adapted model effectively detects
anomalies on real-world conveyor belts.

DISADVANTAGES

Performance Gap for Boulder Anomalies: There is a
significant domain gap between synthetic and real-
world data for the boulder anomaly, resulting in much
lower performance metrics (mMAP scores).

Fixed Density in Synthetic Data Simulation: The
simulator uses a fixed density for anomalies, which
affects the realism of anomaly distribution and the
frequency of their appearance, potentially leading to less
effective training data.

Limited Diversity in Synthetic Data: The simulator
lacks diversity in particulate matter and anomaly types,
limiting the model’s ability to generalize to broader
scenarios.

for

Annotation Challenges Occluded Objects:
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Annotations for partially occluded objects or objects
with disconnected parts could be improved to better
represent the anomalies.

Limited Hardware Capabilities: The CycleGAN
training resolution was constrained by the VRAM
(8GB) of the AMD Radeon™ RX 6600, restricting the
quality of style transfer.

Insufficient Real-World Data: The limited amount of
real-world data affected the domain adaptation process
and required lowering the learning rate to avoid mode
collapse.

IV. PROPOSED SYSTEM

The proposed system for detecting missing bolts on
industrial conveyor belts ensures accuracy, scalability,
and adaptability across diverse environments. Synthetic
data generation simulates various bolt types,
backgrounds, and lighting conditions, reducing
dependency on real-world data. Consistent annotation
and preprocessing prepare the data for YOLOVS8's
instance ~ segmentation,  enhancing  robustness.
CycleGAN-driven domain adaptation bridges the
synthetic-to-real-world data gap, enabling the YOLOv8
model to generalize effectively. The fine-tuned model is
deployed for real-time detection, utilizing GPU
optimization for high-speed inference. API integration
enables seamless interaction with monitoring systems,
providing continuous anomaly detection. This
automation reduces maintenance costs, prevents
downtime, and improves operational safety. Future
enhancements could include expanded synthetic
datasets, environmental simulations, and explainability
tools like Grad-CAM to improve trust and transparency.
The system's real-time capabilities make it suitable for
various industrial applications.

ADVANTAGES

e Scalability: The use of synthetic data reduces
dependence on labor-intensive real-world data
collection, enabling the model to be trained for
various scenarios.

e Real-Time Capability: High inference speeds
allow for continuous monitoring of conveyor
belts without interrupting industrial operations.

e Adaptability: Domain adaptation via CycleGAN
ensures that the system performs effectively in
diverse environments, including varying lighting
and surface conditions.

e Precision and Robustness: The YOLOv8
algorithm's  advanced architecture  ensures
accurate detection of missing bolts, reducing
false positives and negatives.
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V. MODEL DESIGN

Figure: Model Design

INPUT:

e The process begins with an image input (e.g., an
image of a surface containing bolts).

e This image serves as the raw data that the model
will analyze to detect the presence or absence of
bolts.

e Example Input: An image containing bolts and
possibly empty bolt positions.

BACKBONE:

e This is the feature extraction part of the model,
responsible for extracting essential visual
features from the input image.

e Conv: Convolutional layers that apply filters to
detect patterns, textures, and edges in the
image.

e C2f: A block (possibly "CSP2f" from YOLO-
like architectures) used for enhanced feature
extraction while optimizing computation. It
splits the feature map into two parts: one
undergoes transformations, and the other skips
them, improving gradient flow and efficiency.

e SPPF (Spatial Pyramid Pooling Fast):
Aggregates features at multiple scales, enabling
the model to better capture objects of varying
sizes (such as bolts in different positions).

NECK:

e This stage is responsible for feature aggregation
and refining, enabling the model to integrate
feature maps at different resolutions and scales.

e Upsample: Upsampling increases the spatial
resolution of feature maps to match dimensions
for concatenation.

e Concat: Concatenates feature maps from
different levels of the architecture to preserve
multi-scale information.

e C2f: Additional feature extraction blocks that
further refine the aggregated features.

e Purpose: This stage combines high-level and
low-level features to localize and identify
objects more effectively.
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PREDICTION:

This stage generates predictions about the
objects present in the image, including their

are identified and labeled with bounding boxes and
confidence scores. Here's a detailed explanation of

locations (bounding boxes) and categories (e.g.,

"bolt" or "missing bolt").

Detect: The detection head applies learned
parameters to predict object classes and their
bounding boxes. It uses the processed feature

maps from the neck to identify objects.

Outputs: Bounding boxes and class labels for

the detected objects.

OUTPUT:

HARDWARE REQUIREMENTS

the process:
Input:

e The system takes an image of a
mechanical surface with bolt positions as
input.

e In this particular example, some bolts are
properly fixed in their positions, while
others are missing.

Model Processing:

The final output displays the image with
detected objects labeled, along with bounding

boxes.
Bolts are correctly identified and labeled.

Missing bolts (empty positions) are identified

and flagged as "missing."

CPU type Intel Pentium 4
Clock speed 3.0GHz

Ram size 4GB

Hard disk capacity 100 GB

Monitor type
Keyboard type

SOFTWARE REQUIREMENTS

Operating System : Windows OS
Front End : PYTHON

VI. RESULT

Figure: Detection of Missing Bolts

internet keyboard

e The image is passed through a trained
object detection model, which analyzes
it in real-time to identify the presence or
absence of bolts at specific locations.

e The model processes the input image
using a feature extraction and prediction
pipeline (as explained earlier in the
architecture).

e It identifies:

e Bolts: Fully secured and visible
bolts are detected.

e Empty Positions: Positions
where bolts are missing are also
identified.

Detection and Labeling:

15 inch colour monitor

The provided image illustrates the process and
results of a missing bolt detection system. The left
side of the image represents the input scene, while
the right side demonstrates the output of the
detection system, where bolts and missing positions

The processed output (right side of the
image) shows the detection results:
Bounding Boxes: The system draws colored
boxes around identified bolts and empty
positions to indicate their locations.
Confidence Scores: Each bounding box is
annotated with a percentage, representing the
model's confidence in the detection.

For example: B5 (98%): Indicates a detected
empty bolt position with a 98% confidence
score and B2 (88%): Indicates a secured bolt
detected with 88% confidence.

The labeled results provide a clear distinction
between present bolts and missing bolts.

Decision Making:

Based on the detection results, the system
categorizes positions as: Secured: Bolts
properly installed, as shown in positions like
B2 and Missing/Defective: Empty positions
where bolts are absent, such as B6 (confidence
55%).

The results can trigger appropriate actions:
Alert: If missing bolts are detected, the system
generates an alert and Halt Process: The
production or inspection process can halt to
address the defect.
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Output Visualization:

e The final output provides a comprehensive
overview of the bolt inspection: Users can
easily identify which positions are missing
bolts or need attention and The high-
confidence labels ensure reliability in quality
control tasks.

VII. CONCLUSION

The project on missing bolt detection on industrial
conveyor belts using YOLOv8 and API integration
demonstrates a robust, scalable, and cost-effective
approach to anomaly detection. By leveraging synthetic
data generation, the system effectively addresses the
challenge of limited real-world anomalous datasets. The
use of CycleGAN-driven domain adaptation ensures that
the YOLOV8 model generalizes well from synthetic to
real-world conditions, improving accuracy in diverse
environments. The integration of an API key allows
seamless real-time communication between the detection
model and conveyor belt monitoring systems, enabling
continuous and automated monitoring without manual
intervention. The high inference speeds achieved make
the system suitable for real-time applications, reducing
maintenance costs, preventing operational downtime, and
ensuring safety. This project exemplifies a cutting-edge
application of deep learning and domain adaptation
techniques in industrial settings.
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