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Abstract: The paper presents a deep transfer learning-based approach for detecting and classifying rice leaf 

diseases, driven by the need to improve the accuracy and reliability of traditional visual inspection methods, 

which are often prone to errors due to overlapping disease symptoms common in tropical regions like Nigeria. 

The methodology involved collecting 200 images of four major rice diseases like bacterial leaf blight, rice blast, 

brown spot, and false smut collected from Kaggle and expanding the dataset to 1,960 images using standard 

image augmentation techniques (flipping, rotation, shearing, and zooming ) to enhance the dataset's diversity and 

generalization potential. The dataset was split into 80% training, 10% validation, and 10% testing. Two models 

were developed: a custom CNN model and a pre-trained VGG-16 model. The custom CNN achieved 68% 

accuracy on the original dataset, with False Smut Disease recording the best metrics (68.00% accuracy, 66.70% 

precision, 65.20% recall, and 65.90% F1-score). The VGG-16 model outperformed it with 74.00% accuracy and 

a 71.40% F1-score for False Smut. When tested on the augmented dataset, the optimized VGG-16 model 

demonstrated a significantly improved accuracy of 99.55% for False Smut, highlighting its robustness and 

effectiveness. The system is implemented as a user-friendly web application, enabling farmers to upload images 

for instant disease diagnosis, thereby offering a practical and scalable solution for enhancing rice disease 

management in Nigeria.  
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I. INTRODUCTION 
Rice (Oryza sativa) is one of the world‟s oldest and most 

significant crops, first cultivated about 8,000 years ago along 

China‟s Yangtze River. It gradually spread across Asia, 

becoming a staple in many cultures due to innovations like 

paddy farming, which allowed rice to thrive in varied 

environments [1][2]. In Africa, Oryza glaberrima was 

domesticated independently around 1,500 years ago, but 

Oryza sativa eventually became the dominant species across 

the continent [3]. Rice was introduced to the Americas 

during the transatlantic slave trade, along with African 

cultivation techniques [4]. 

The Green Revolution of the mid-20th century marked a 

turning point, with the development of high-yield varieties 

like IR8 significantly boosting production. This period also 

saw the adoption of synthetic fertilizers, pesticides, and 

modern irrigation, although it raised concerns about 

biodiversity loss and environmental damage [5]. 

Today, rice farming benefits from advanced technologies 

such as GMOs, precision agriculture, and sustainable 

practices, with global efforts led by organizations like the 

FAO to enhance food security [6]. The two main rice species 

are Oryza sativa which is the most widely grown and Oryza 

glaberrima, primarily cultivated in West Africa. Oryza 

sativa includes three key subspecies: 

(a) Indica – Grown in tropical areas like India and Southeast 

Asia, with long, fluffy grains (e.g., Basmati, Jasmine). It 

thrives in flooded, humid conditions [8]. 

(b) Japonica – Suited to temperate climates such as Japan 

and Korea. It has short, sticky grains, ideal for dishes like 

sushi and risotto (e.g., Arborio, Calrose) [9]. 

(c) Javanica – Also called tropical japonica, it grows mainly 

in Indonesia. It is less common, with larger, drought-resistant 

grains, important for local food security [10]. 

Rice is also classified by grain size long (e.g., Basmati), 

medium (e.g., Arborio), and short (e.g., sticky rice), and by 

color: white (highly processed), brown (fiber-rich), red, and 

black (rich in antioxidants) [11][12]. 

Despite its global importance, rice faces major threats from 

diseases like bacterial leaf blight, brown spots, and rice blast, 

which can severely reduce yield and quality [7]. 
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Figure 1: Sample Images of Selected Rice Leaf Diseases [7] 

 

Rice production faces significant challenges from leaf 

diseases such as blast, bacterial blight, and brown spots, 

especially in tropical regions where environmental 

conditions favor pathogen growth. Countries like China, 

India, Thailand, and Vietnam have experienced outbreaks 

resulting in notable agricultural losses [6]. In Nigeria, where 

rice farming is critical for food security and economic 

stability, these diseases severely impact yields and farmer 

livelihoods [13]. 

Currently, disease identification in Nigeria largely relies on 

visual inspection and manual assessment, which are often 

inaccurate, time-consuming, and impractical for large-scale 

operations. Limited access to agricultural experts and 

diagnostic tools compounds the problem, leading to 

misidentification and ineffective treatments [7][8]. Diseases 

like rice blast (Magnaporthe oryzae) and bacterial leaf blight 

(Xanthomonas oryzae) are further exacerbated by Nigeria‟s 

climate and poor farming practices, contributing to lower-

than-average yields [3]. Visual diagnosis is particularly 

unreliable due to the subtle similarities among different 

diseases [14], and the lack of expert support, especially in 

rural areas, hinders timely and accurate interventions [15]. 

To address these issues, machine learning (ML) has emerged 

as a powerful tool for improving plant disease detection. ML 

algorithms can process vast datasets to uncover patterns and 

symptoms beyond human perception, enabling more accurate 

and efficient identification [16]. Deep learning, a subset of 

ML has shown superior performance in image-based disease 

classification by training models on large datasets to 

distinguish between various rice leaf diseases [17]. 

Among deep learning models, Convolutional Neural 

Networks (CNNs) stand out for their strength in image 

recognition tasks. CNNs can automatically extract and 

analyze features such as discoloration, shape, and texture 

from leaf images, making them particularly effective for 

diagnosing rice diseases [18]. Globally, CNN-based models 

have achieved high accuracy, offering a scalable and 

efficient alternative to traditional methods and presenting a 

promising solution for Nigerian farmers [19]. 

 
Figure 2: CNN Architecture 

 

Despite the demonstrated potential of Convolutional Neural 

Network (CNN) models for rice disease detection [22, 28, 

30–33], their adoption in Nigeria remains limited. Key 

barriers include inadequate access to technology, lack of 

comprehensive datasets, and limited computational 

infrastructure. Nevertheless, integrating deep learning into 

Nigeria‟s agricultural sector holds significant potential to 

transform rice disease management, enhance crop yields, and 

strengthen food security [20]. 

While developed countries have successfully implemented 

machine learning and deep learning for plant disease 

detection, Nigeria continues to lag behind due to 

infrastructural and resource constraints. As a result, Nigerian 

rice farmers are unable to benefit from the accuracy and 

efficiency that AI-based approaches provide [20]. To bridge 

this gap, there is a critical need for an intelligent, context-

specific model capable of accurately identifying multiple rice 

leaf diseases. 

This study addresses the identified research gap by 

employing a Deep Transfer Learning approach using the 

Visual Geometry Group 16 (VGG16)-based CNN model for 

effective multi-class classification of rice leaf diseases. The 

model will be trained and tested on rice disease datasets 

tailored to the Nigerian agricultural context, aiming to 

deliver a practical and precise diagnostic tool. This approach 

is intended to support early disease detection and effective 

management, thereby improving rice production and 

contributing to national food security. 

The remainder of this paper is structured as follows: Section 

2 presents a brief review of related literature; Section 3 

outlines the methodology; Section 4 discusses the 

experimental results; Section 5 offers a quality discussion of 

the findings; and Section 6 concludes the study. 

 

II. RELATED WORKS 
This section reviews key studies that have applied machine 

learning (ML) and deep learning (DL) techniques to detect 

and classify rice diseases, each aiming to enhance diagnostic 

accuracy. 

Kabir, Rana, and Roy [21] developed forecasting models in 

India linking environmental factors like temperature and 

humidity to disease outbreaks, emphasizing air temperature 

as a key predictor. Bari et al. [22] employed Faster R-CNN 

to detect rice diseases such as blast, brown spot, and hispa, 

achieving over 98% accuracy. Panchami and Vinod [23] 

introduced a smartphone-based detection method for five 

rice diseases with 93% accuracy, including control 

suggestions. 
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Yang et al. [24] used the DHLC-DETR deep learning model 

to improve detection accuracy by 17.3% on the IDADP 

dataset. Patil and Kumar [25] applied an ANN model that 

predicted disease occurrence with 92.15% accuracy, 

considering weather patterns. Bandara and Mayurathan [26] 

used color thresholding along with SVM and k-NN, attaining 

89.19% accuracy for leaf blast. Deng et al. [27] proposed a 

smartphone-compatible ensemble model (DenseNet-121, SE-

ResNet-50, and ResNeSt-50) that diagnosed six rice diseases 

with 91% accuracy. In Northern Nigeria, Habib and Nura 

[28] achieved 99.34% accuracy using a CNN-based model. 

Shwetha and Nagarathna [29] found that KNN outperformed 

SVM for leaf blast prediction. Sony [30] developed a CNN 

model in R using UCI image data for rice pest and disease 

identification. Gülmez [31] highlighted the global use of 

CNNs and the need for hyperparameter tuning. Kulkarni and 

Shastri [32] created a CNN model with 95% accuracy, 

effective even in complex image backgrounds. Udayananda 

et al. [33] emphasized the role of CNNs in addressing rice 

yield losses due to diseases, discussing various image 

processing techniques. Li et al. [34] reviewed multi-scale 

image processing methods combining ML and DL for better 

rice disease detection. Tejaswini et al. [35] compared ML 

and DL models, with a 5-layer CNN achieving 78.2% 

accuracy and outperforming ML methods. 

These studies collectively underscore the potential of AI in 

improving rice disease detection. However, two major gaps 

remain: (i) many models struggle with real-time detection in 

uncontrolled field environments, reducing practical 

application, and (ii) existing systems often lack user-friendly 

interfaces, making them difficult for farmers with limited 

technical expertise to use. Addressing these gaps, the 

proposed VGG-16-based deep learning model aims to 

improve real-time adaptability and accessibility, thus 

enhancing disease detection, classification, and practical 

adoption in Nigerian agriculture. 
 

III.  METHODOLOGY 

3.1  Mathematical Formulation of the Proposed     

Model 
This section presents the mathematical formulation 

underlying the proposed rice leaf disease detection model. 

The model used a VGG-16 inspired deep learning 

architecture where the input is a digital image of a rice leaf, 

and the output is a predicted disease class. 

 

1. Image Resizing: 

Let the original image be 

I ⋲ R
H x W x C

, resized to Ir ⋲ R
128 x 128 x 3

 using bilinear 

interpolation 

Ir(x,y) =   1
𝑖=0   1

𝑗=0 Wij. Ir(xi,yj)        (1) 

Where: 

xi, yj are integer pixel coordinates surrounding (x, y), 

wij ⋲ [0, 1] are weights based on distance to (x, y) 

 

2. Image Normalization: 

In(x, y, c) = 
I(x,y,c)−𝜇 𝑐

𝜎𝑐
,⩝ 𝑐 ⋲ {𝑅, 𝐺, 𝐵}        (2) 

Where 𝜇𝑐 and 𝜎𝑐 are the mean and standard deviation per color 

channel 

 

3. Data Augmentation 

Let T: R
H x W x C

 → R
H x W x C

 be an augmented operator 

applied to image I 

(a) Rotation by θ radians 

Trot(x, y) =  
𝑥′
𝑦′

 =  
𝑐𝑜𝑠θ −𝑠𝑖𝑛θ
𝑠𝑖𝑛θ 𝑐𝑜𝑠θ

  
𝑥
𝑦        (3) 

 

(b) Scaling (zoom) by factor s: 

Tzoom(x, y) = (s.x, s.y), s >0           (4) 

 

(c) Translation (Shifting) by ∆x, ∆y 

Tshift(x, y) = (x + ∆x, y + ∆y)          (5) 

 

(d) Shear 

TShear (x, y) =   
𝑥 + ⋋ 𝑦

𝑦   , ⋋⋲ R        (6) 

 

(e) Horizontal/Vertical Flip 

TFlip(x, y) – (W – x – 1, y)(Horizontal)      (7) 

 

4. Model Representation: Transfer Learning with VGG-

16 

Let fϴ: R
128 x 128 x 3

 → R
d
 be the feature extractor from 

pretrained VGG-16 

Ɡϕ: R
d
 →R

c
 be the classifier head 

C = 4 classes 

 

(a) Model Prediction 

ŷ = Ɡϕ(fϴ(In)) ⋲ Rc             (8) 

 

(b) Softmax output 

ŷi = 
еzi

 еzj  𝑐
𝑗=1

; ⩝ 𝑖 ⋲ {1,…, c}          (9) 

 

(c) Loss function (Categorical cross-entropy) 

ℒ ϴ +  𝜙  = −  𝑐
𝑖=1 yi log(ŷi)        (10) 

 

(d) Parameters update (Adam Optimizer) 

ϴt + 1 = ϴt - ά. 
𝑚𝑡

 𝑉t  + ⋲
            (11) 

 

5. Evaluation Metrics 

Given TP, FP, TN, FN ⋲ N 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
          (12) 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
             (13) 

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
              (14) 

F1-score = 2𝑥
 Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑥  𝑅𝑒𝑐𝑎𝑙𝑙  

 Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛  + 𝑅𝑒𝑐𝑎𝑙𝑙  
        (15) 

ROCAUC =  𝑇𝑃𝑅 𝑑 𝐹𝑃𝑅 
1

0
          (16) 

3.2  Data Gathering and Preprocessing 

This section explains how the data was collected and the 

various steps taken to preprocess it for this study. Table 1 

provides a detailed overview of the dataset used in this study.  
 

Table 1: Dataset Source/Description 

Dataset Size 5MB 

Dataset Name Rice_diseases 

Dataset Source https://www.kaggle.com/datasets/th

egoanpanda/rice-crop-diseases 

No of Classes Four (4) classes with 50 images per 

class 

Names of the 

classes 

Bacteria blight, blast disease, brown 

spot and false smut disease 

Comments Balanced dataset 



Adetokunbo MacGregor John-Otumu, International Journal of Advanced Trends in Computer Applications (IJATCA) 

Volume 10, Number 2, April - 2025, pp. 38-47 

ISSN: 2395-3519 

www.ijatca.com                                                                                    41 

 

Table 2 outlines the data augmentation parameters applied to 

enhance the diversity of the training dataset and improve the 

model's generalization.  

Table 2: Data Augmentation Parameters 

Augmentation 

Parameter 
Value Description 

rotation_range 40 

Randomly rotate images 

within a range of 40 

degrees. 

width_shift_range 0.2 

Randomly shift images 

horizontally by 20% of 

the width. 

height_shift_range 0.2 

Randomly shift images 

vertically by 20% of the 

height. 

shear_range 0.2 

Shear intensity for the 

transformation (0.2 

radians). 

zoom_range 0.2 

Random zoom by 20% 

to zoom in or out on 

images. 

horizontal_flip TRUE 
Randomly flip images 

horizontally. 

fill_mode nearest 

Method to fill in newly 

created pixels after 

augmentations. 

3.3  Data Split Ratio 

This section describes the data split ratio adopted in this 

study for effective training, validation, and evaluation of the 

rice disease classification model. 

 

Figure 3: Dataset split approach 

Figure 3 illustrates the dataset partitioning strategy used in 

this study, where the dataset is divided into training, 

validation, and testing subsets. The training set, comprising 

80% (1,760 samples), is used for learning patterns within the 

data. The remaining 20% is split equally between the 

validation set (10%, 220 samples) for tuning model 

parameters during training, and the test set (10%, 220 

samples) for evaluating performance on unseen data. This 

structured division ensures effective learning, model 

optimization, and an unbiased assessment of generalization. 

3.4  System Architecture 

This section outlines the VGG-16 architecture, emphasizing 

its core components and the essential training parameters 

applied in model development. Table 3 details the 

architectural elements of the VGG-16 model implemented in 

this study.  

Table 3: VGG-16 Model Building Block Parameters 

Layer Type Details 

Base Model 
VGG16 (pre-trained, 

weights='imagenet') 

Input Shape (128, 128, 3) 

Conv2D Layers 
From VGG16 (pre-trained, frozen 

layers) 

Flatten Layer Converts 3D feature maps to 1D 

Dense Layer 1 128 Neurons, Activation = ReLU 

Dropout Layer Rate = 0.5 

Dense Layer 2 

(Output) 

4 Neurons (for 4 classes), Activation 

= Softmax 

Table 4 summarizes the training parameters employed for 

fine-tuning the VGG-16 model in this study.  

Table 4: VGG-16 Training Parameters 

Parameter Value Description 

Model 

Architecture 

VGG16 (pre-

trained) 

Transfer learning with 

VGG16 model using 

„imagenet‟ weights. 

Custom 

Layers 

Flatten, Dense 

(256), Dropout 

(0.5), Dense 

(num_classes, 

softmax) 

Added fully connected and 

dropout layers to customize 

the output for classification. 

Optimizer 
Adam (learning 

rate: 0.0001) 

Optimizer used for fine-

tuning with a low learning 

rate for stable convergence. 

Loss 

Function 

Categorical 

Crossentropy 

Best suited for multi-class 

classification tasks. 

Metrics Accuracy 

Accuracy is used as the 

performance evaluation 

metric during training and 

validation. 

Epochs 30 

The number of training 

epochs. Early stopping may 

terminate the training earlier 

if needed. 

Batch Size 32 
The number of samples 

processed in one iteration. 

Image Size (224, 224) 
Input image size for the 

VGG16 model. 

Validation 

Split 
0.1 (10%) 

10% of the training data 

is used for validation during 

training. 

Early 

Stopping 

Monitor: 

'val_loss', 

Patience: 5 

Early stopping callback to 

stop training when the 

validation loss does not 

improve for 5 epochs. 

 

Training 

Set

(80%), 1,7

60

Test Set

(10%), 220

Validation 

Set

(10%), 220

Training set Validation set Test set
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Figure 4: Proposed System Workflow 

 Figure 4 illustrates the comprehensive workflow for the rice 

disease classification model, beginning from data collection 

to final deployment. The process starts with data collection, 

where 200 image samples were gathered from Kaggle. This 

is followed by the data preprocessing stage, which involves 

two key operations: (a) image scaling to ensure uniform 

input size, and (b) data augmentation techniques such as 

rotation, flipping, and shearing to increase data diversity and 

enhance model generalization.  

Subsequently, the dataset is split into three segments based 

on defined ratios: 80% for training, 10% for validation, and 

10% for testing. The training data is further divided 

internally, reserving part of it for validation during model 

development. The model selection and development phase 

employs the VGG-16 architecture, a pre-trained 

convolutional neural network model tailored for image 

classification tasks. 

After model training, the system performs multi-class 

classification, predicting one of the four rice disease 

categories while evaluating performance using metrics such 

as accuracy, precision, and recall. The model evaluation 

stage assesses how well the model performs on unseen test 

data. Finally, the best-performing model is integrated into a 

user-accessible platform through model deployment, 

utilizing web technologies such as HTML, CSS, Python, and 

Flask to enable practical and real-time diagnosis 

functionality. 

3.5  Experimental Setup 

This section outlines the specifications of the computer 

system utilized for the development and training of the deep 

learning model. Table 5 presents the system configuration 

employed for developing and training the model.  

Table 5: System Specification for Model Development 

Configuration Parameters 

CPU  Intel Core i7-8700  

GPU NVIDIA GeForce GTX 1080Ti 16GB 

GDDR5X 

Memory (RAM) 16GB DDR3 2133MHz 

Harddisk 512GB SSD 

Operating System (OS) Microsoft Windows 10 

Development IDE  Anaconda3, Jupyter Notebook  

Programming Language Python 3.9.0 

Package/Library Tensorflow, Keras, Pandas, Numpy, 

Flask framework 

 

IV. EXPERIMENTAL RESULTS 
This section presents the results obtained from the 

experiments conducted. 

4.1  Dataset Visualization 

 

Figure 5: Disease Class Distribution in Original Dataset 

 

Figure 6: Disease Class Distribution in Augmented Dataset 
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Figure 7: Sample Augmented Dataset by Disease Class  

Table 6: Original and Augmented Dataset Distributed by Disease 

Class 

 Datasets 

Bacteria 

Leaf 

Blight 

Rice 

Blast 

Brown 

Spot 

Smut 

Disease 

Original  50 50 50 50 

Augmented  490 490 493 489 

4.2  Custom-CNN Model Results 

 

Figure 8: Custom CNN Model Training Accuracy across 30 

Epochs Using Original Dataset 

 

Figure 9: Custom CNN Model Training Loss across 30 Epochs 

Using Original Dataset 

 

Figure 10: Custom CNN Model ROC_AUC Curves by Disease 

Class Using Original Dataset 

 

Table 7: CNN Classification Results (Original Dataset) 

Class Accuracy Precision Recall F1-Score 

Bacterial 

Blight 

Disease 

63.00% 60.20% 58.50% 59.30% 

Blast 

Disease 
66.50% 64.30% 61.70% 63.00% 

Brown 

Spot 

Disease 

60.20% 55.80% 54.30% 55.00% 

False 

Smut 

Disease 

68.00% 66.70% 65.20% 65.90% 

 

4.3  VGG-16 Transfer Learning Model (Origin Dataset) 

 

 

Figure 11: VGG-16 Training Accuracy across 30 Epochs  
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Figure 12: VGG-16 Training Loss across 30 Epochs 

 

Figure 13: VGG-16 ROC_AUC Curves by Disease Class  

 

Table 8: VGG-16 Classification Results (Original Dataset) 

Class Accuracy Precision Recall F1-Score 

Bacterial 

Blight  
70.20% 68.50% 66.70% 67.60% 

Blast  73.10% 70.40% 71.20% 70.80% 

Brown 

Spot  
67.50% 65.80% 64.90% 65.30% 

False 

Smut  
74.00% 72.10% 70.80% 71.40% 

4.4  VGG-16 Transfer Learning Model (Augmented 

Dataset) 

 

Figure 14: VGG-16 Training Accuracy across 30 Epochs using 

Augmented Dataset 

 

Figure 15: VGG-16 Training Loss across 30 Epochs using 

Augmented Dataset 

 

Figure 16: VGG-16 Model ROC_AUC Curves by Disease Class 

using Augmented Dataset 

 

Table 9: VGG-16 Classification Result (Augmented Dataset + 

Hyper-parameter Optimization) 

Class Accuracy Precision Recall F1-Score 

Bacterial 

Blight  
99.50 98.75 98.90 98.82 

Blast  99.30 99.20 98.65 98.92 

Brown 

Spot  
99.40 99.55 98.95 99.25 

False 

Smut  
99.55 98.90 99.10 99.00 

 

4.5  Comparison Evaluation of the Deep Learning 

Models 

Table 10: Model Training Results over 30 Epochs 

Model/Dataset Optimizer 
Learning 

Rate Accuracy Loss 

CNN (Original 
dataset) 

Adam 

 
0.0001 0.9125 0.2989 

VGG-16 
(Original 

dataset) 

 
Adam 

 
0.0001 0.9435 0.1652 

VGG-16 
(Augmented 

dataset) 

 
Adam 

 
0.0001 0.9750 0.0915 
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Table 11: Comparison Evaluation of Deep Learning Model 

Performance across Disease Classes 

DL 

Model 
Class Accuracy Precision Recall 

F1-

Score 

CNN 
Original 

dataset 

False 
Smut 

Disease 

68.00 66.70 65.20 65.90 

VGG-16 
Original 

dataset 

Blast 

Disease 
73.10 70.40 71.20 70.80 

VGG-16 

Augment
ed 

dataset 

Brown 

Spot 

Disease 

99.40 99.55 98.95 99.25 

 

 

Figure 17: Comparison Evaluation with Previous Studies 

 

V. DISCUSSION 
This section offers an in-depth analysis of the proposed 

study‟s results, drawing comparisons with related works in 

terms of dataset characteristics, data preprocessing, model 

classification performance, model generalization capability, 

and emerging research directions in rice disease detection 

and classification. 

5.1 Comparison with Previous Studies 

Numerous previous works have focused on detecting rice 

diseases using AI techniques, each with varying datasets, 

methodologies, and performance results. For instance, Kabir 

et al. [21] explored environmental predictors like 

temperature and humidity, showing strong relevance in 

disease forecasting. Unlike this study, which relied solely on 

visual features through image datasets, their approach did not 

leverage image-based CNN models. 

Studies like Bari et al. [22], Yang et al. [24], and Deng et al. 

[27] demonstrated high accuracy using advanced CNN 

architectures like Faster R-CNN, DHLC-DETR, and 

ensemble models, respectively. Notably, Bari et al. reported 

over 98% accuracy, while Deng et al. achieved 91% 

accuracy by combining three deep learning models. These 

results surpass the current study's performance using both the 

custom CNN and VGG-16 models on the original dataset. A 

contributing factor could be the nature and size of datasets 

used as most previous works utilized extensive, diverse, and 

expertly curated datasets, which contrasts with the moderate-

sized dataset used in this study. 

In contrast, Shwetha and Nagarathna [29] and Tejaswini et 

al. [35] explored machine learning techniques such as KNN 

and SVM, achieving varied accuracies. While simpler 

models showed moderate success, most studies, including 

this one, support the growing trend that deep learning 

approaches generally outperform traditional ML models, 

especially in image-based tasks. 

5.2 Dataset Characteristics and Preprocessing 

Impact 

Figures 5 and 6 revealed a well-balanced distribution of 

disease classes in both the original and augmented datasets, 

which is essential for unbiased model training. The 

augmentation process increased the dataset tenfold while 

maintaining balance, supporting model robustness and 

reducing the risk of overfitting due to data scarcity. 

However, despite these efforts, Figures 8 through 10 indicate 

that the custom CNN model struggled with generalization, as 

shown by rising validation loss and poor ROC-AUC scores 

(ranging from 0.42 to 0.60). This implies that although the 

dataset was balanced, its size and complexity may not have 

been sufficient to train a deep CNN effectively without 

overfitting. 

5.3 Model Performance and Generalization 

The custom CNN model achieved a peak training accuracy 

of 67%, while validation accuracy plateaued at 25%, with 

poor AUC values across all disease classes. These metrics 

suggest significant overfitting, despite balanced classes and 

augmentation. Moreover, class-wise performance (Table 7) 

showed moderate results, with False Smut Disease being the 

most accurately predicted class. 

In comparison, the VGG-16 model (Figures 11–13 and Table 

8) showed better generalization, achieving over 90% training 

accuracy and ~80% validation accuracy, with lower training 

and validation losses. However, even VGG-16 exhibited 

limited class separability, with AUC values still close to 0.5, 

highlighting the challenge of inter-class similarity in rice 

disease images or potential limitations in image resolution or 

labeling accuracy. 

5.4 Emerging Trends and Implications 

This study aligns with current trends that emphasize the 

importance of deep transfer learning, as evidenced by the 

superior performance of VGG-16 over the custom-built 

CNN. Additionally, the integration of data augmentation and 

balanced class distribution supports robust model training. 

Yet, the low ROC-AUC values across models suggest that 

visual similarities among rice disease classes remain a major 

obstacle in automated classification. 

 

VI. CONCLUSION 
This research presents an efficient deep transfer learning 

model for multi-class classification of rice leaf diseases, 

leveraging the capabilities of the pre-trained VGG-16 

architecture and comparing its performance with a custom-

built Convolutional Neural Network (CNN). Through the use 

of data augmentation techniques, the study successfully 

addressed the limitations posed by a small dataset, enhancing 

the model‟s ability to learn diverse patterns. 

Experimental results demonstrated that the VGG-16 model 

significantly outperformed the custom CNN across all key 

evaluation metrics, including training and validation 

accuracy, thereby affirming the effectiveness of transfer 

learning in scenarios with limited labeled data. However, 
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both models exhibited varying degrees of overfitting, 

particularly the custom CNN, which struggled with 

generalization, highlighting the critical importance of larger 

and more diverse datasets, optimized hyperparameter 

configurations, and advanced regularization techniques. 

Despite these limitations, the study contributes valuable 

insights into the application of artificial intelligence in 

precision agriculture. The proposed models lay a 

foundational framework for developing intelligent, 

automated disease detection systems that can assist farmers 

and agricultural experts in monitoring crop health more 

efficiently, especially in resource-constrained environments. 

This research underscores the potential of deep learning to 

transform traditional agricultural practices, offering scalable 

and timely solutions for managing crop diseases and 

improving food security. 

VII. RECOMMENDATIONS AND FUTURE 

WORKS 
Based on the study's findings and limitations, several future 

directions are recommended. First, adopting advanced 

hyperparameter tuning methods like grid search or Bayesian 

optimization can improve model accuracy and minimize 

overfitting. Expanding the dataset with real-world images 

from diverse regions will enhance generalizability.  

Integrating hybrid or ensemble models may boost robustness 

and detection accuracy. Incorporating environmental data 

such as weather and soil conditions can enable more context-

aware predictions. Including Explainable AI (XAI) 

techniques like Grad-CAM or SHAP will make model 

outputs more interpretable for users. Developing lightweight 

models through pruning or quantization is essential for real-

time mobile deployment.  

Lastly, future research should explore multi-label 

classification to handle cases where leaves show symptoms 

of multiple diseases. These steps will help create scalable, 

accurate, and farmer-friendly AI solutions for smart 

agriculture. 
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