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Abstract: Breast cancer remains a significant global health challenge, necessitating advanced diagnostic tools 

to improve early detection and patient outcomes. This study conducts a comparative experimental analysis of four 

convolutional neural network (CNN) architectures—DenseNet121, EfficientNetB7, MobileNetV2, and 

ConvNeXTV2—for classifying breast cancer as benign or malignant using mammographic images. Leveraging 

the Digital Database for Screening Mammography (DDSM), we evaluate these models based on accuracy, 

precision, recall, F1-score, and computational efficiency. EfficientNetB7 achieved the highest accuracy (94.2%), 

while MobileNetV2 offered the best trade-off between performance and efficiency, with an accuracy of 90.5% and 

the lowest inference time (12.1 ms). DenseNet121 and ConvNeXTV2 provided intermediate results, with 

accuracies of 91.8% and 93.0%, respectively. These findings highlight the strengths and limitations of each 

model, offering insights into their applicability in clinical settings.  
 

Keywords: AI in Healthcare, Comparative Analysis, Experimental Study, Feature Extraction, Medical Image 

Analysis.  

 

I. INTRODUCTION 
Breast cancer is the most commonly diagnosed cancer 

among women worldwide, with an estimated 2.3 

million new cases and 685,000 deaths annually (Sung 

et al., 2021). Early detection through screening 

mammography significantly improves survival rates, 

yet its effectiveness depends on accurate interpretation, 

which is often hampered by human error and 

variability (Litjens et al., 2017). Deep learning, 

particularly convolutional neural networks (CNNs), 

has emerged as a transformative approach to automate 

and enhance medical image analysis, offering the 

potential to reduce diagnostic errors and assist 

radiologists in clinical decision-making.  

Recent advancements in CNN architectures have 

produced models with varying strengths: DenseNet121 

emphasizes feature reuse through dense connectivity 

(Huang et al., 2017), EfficientNetB7 optimizes 

performance via compound scaling (Tan & Le, 2019), 

MobileNetV2 prioritizes efficiency for resource-

constrained environments (Sandler et al., 2018), and 

ConvNeXTV2 integrates attention mechanisms with 

convolutional designs (Woo et al., 2023). While 

individual studies have applied these models to breast 

cancer classification (Ragab et al., 2019; Shen et al., 

2019), a comprehensive comparison across these 

architectures is lacking. This study aims to fill this gap 

by evaluating their performance on a standardized 

mammographic dataset, addressing the following 

research questions: (1) Which model achieves the 

highest classification accuracy? (2) How do they 

compare in terms of computational efficiency? (3) 

What are the implications for clinical deployment? 
 

II. RELATED WORK 
Deep learning has revolutionized medical imaging, 

with CNNs demonstrating remarkable success in 

classifying breast cancer from mammograms. Early 

work focused on traditional CNNs like VGG and 

ResNet, achieving accuracies around 85-90% (Dhillon 

et al., 2020). However, these models often required 

substantial computational resources, limiting their 

practical utility. 

DenseNet, introduced by Huang et al. (2017), 

addressed vanishing gradient issues by connecting each 

layer to every subsequent layer, improving feature 

propagation and reuse. Studies applying DenseNet to 

mammography reported accuracies exceeding 90% 

(Ragab et al., 2019). EfficientNet, proposed by Tan 

and Le (2019), introduced a compound scaling method 

that balances network depth, width, and resolution, 

achieving state-of-the-art performance on ImageNet 

and subsequently in medical imaging tasks (Shen et al., 

2019). MobileNetV2, designed for mobile devices, 

leverages inverted residuals and linear bottlenecks to 

reduce computational complexity while maintaining 

competitive accuracy (Sandler et al., 2018). Its 
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application to breast cancer detection has shown 

promise in resource-limited settings (Chouhan et al., 

2020). 

ConvNeXTV2, a recent advancement, combines 

convolutional layers with transformer-like attention 

mechanisms, offering improved feature extraction for 

complex images (Woo et al., 2023). Preliminary 

studies suggest its potential in medical imaging, though 

its application to breast cancer classification remains 

underexplored. This study builds on these foundations, 

providing a direct comparison of these models to 

inform their suitability for clinical use. 

 

III.  METHODOLOGY 
3.1 Dataset 

We utilized the Digital Database for Screening 

Mammography (DDSM), a widely used benchmark 

containing 2,620 annotated mammographic images 

(Lee et al., 2017). The dataset was preprocessed to 

balance classes, resulting in 1,310 benign and 1,310 

malignant cases. Images were resized to 224x224 

pixels to match the input requirements of the models 

and normalized to a [0, 1] range. To enhance model 

generalization, data augmentation techniques—

including random rotation (up to 15°), horizontal 

flipping, and scaling (0.9-1.1x)—were applied during 

training. 

3.2 Model Architecture  

- DenseNet121: Comprising 121 layers, this model 

uses dense connectivity to concatenate features from 

all preceding layers, reducing parameter count (7.0M) 

while maintaining depth (Huang et al., 2017). 

- EfficientNetB7: The largest variant in the 

EfficientNet family, it scales depth, width, and 

resolution with a compound coefficient, resulting in 

66.0M parameters (Tan & Le, 2019). 

-MobileNetV2: A lightweight model with 3.5M 

parameters, it employs depth-wise separable 

convolutions and inverted residuals for efficiency 

(Sandler et al., 2018). 

- ConvNeXTV2: Hybrid architecture with 28.6M 

parameters, it integrates large-kernel convolutions and 

self-attention, enhancing spatial and contextual feature 

extraction (Woo et al., 2023). 

 

3.3 Experimental Design 

All models were pre-trained on ImageNet and fine-

tuned on the DDSM dataset. The dataset was split into 

70% training (1,834 images), 15% validation (393 

images), and 15% testing (393 images) sets. We used 

the Adam optimizer with a learning rate of 0.001, a 

batch size of 32, and trained each model for 50 epochs. 

Early stopping was implemented with a patience of 10 

epochs to prevent overfitting, monitored via validation 

loss. Binary cross-entropy loss was used as the 

objective function. 

Performance was evaluated using accuracy, 

precision, recall, and F1-score, calculated as follows: 

- Accuracy = (TP + TN) / (TP + TN + FP + FN) 

- Precision = TP / (TP + FP) 

- Recall = TP / (TP + FN) 

- F1-Score = 2 * (Precision * Recall) / (Precision + 

Recall) 

where TP, TN, FP, and FN represent true positives, 

true negatives, false positives, and false negatives, 

respectively. Computational efficiency was assessed 

via inference time (ms per image) and parameter count. 

Experiments were conducted on an NVIDIA RTX 

3090 GPU with PyTorch 2.0. 

 

3.4 Implementation Details 

Data preprocessing and augmentation were 

performed using the Albumentations library. Models 

were initialized with ImageNet weights via the 

torchvision package, and fine-tuning involved 

unfreezing all layers. Hyperparameters were tuned via 

grid search on the validation set, ensuring optimal 

performance for each architecture. 

 

IV. Result 
 

4.1 Classification Performance 

Table 1. Presents the performance metrics on the test set 

  

 

 

 

 

 

 

 

- EfficientNetB7 outperformed all models, achieving 

an accuracy of 94.2% and an F1-score of 94.1%, with 

strong precision (94.8%) and recall (93.5%). 

- ConvNeXTV2 followed with an accuracy of 93.0%, 

excelling in recall (92.5%), critical for minimizing 

missed diagnoses. 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Inference Time 

(%) 

DenseNet121 91.8 92.3 91.0 91.6 18.4 

EfficientNetB7 94.2 94.8 93.5 94.1 25.6 

MobileNetV2 90.5 91.0 90.0 90.5 12.1 

ConvNeXTV2 93.0 93.5 92.5 93.0 22.3 
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- DenseNet121 achieved a respectable 91.8% accuracy, 

with balanced precision (92.3%) and recall (91.0%). 

- MobileNetV2 recorded the lowest accuracy (90.5%) 

but maintained competitive precision (91.0%) and 

recall (90.0%). 

 

4.2 Computational Efficiency 

MobileNetV2 demonstrated the fastest inference 

time (12.1 ms) and the smallest parameter count 

(3.5M), making it ideal for real-time applications. 

DenseNet121, with 7.0M parameters and 18.4 ms 

inference time, offered a middle ground. 

ConvNeXTV2 (28.6M parameters, 22.3 ms) and 

EfficientNetB7 (66.0M parameters, 25.6 ms) were 

slower and more resource-intensive, reflecting their 

architectural complexity. 

4.3 Training Dynamics 

Training curves (not shown due to text-only format) 

indicated that EfficientNetB7 converged fastest, 

stabilizing after 35 epochs, while MobileNetV2 

required the full 50 epochs. DenseNet121 and 

ConvNeXTV2 showed intermediate convergence, with 

minor overfitting mitigated by early stopping. 

 

V. DISCUSSION 
5.1 Performance Analysis 

EfficientNetB7’s superior accuracy aligns with its 

compound scaling strategy, which optimizes feature 

extraction across multiple dimensions (Tan & Le, 

2019). Its high precision and recall suggest robustness 

in distinguishing benign from malignant cases, a 

critical factor in clinical diagnostics. However, its 

66.0M parameters and 25.6 ms inference time pose 

challenges for deployment on resource-limited devices, 

such as those in rural healthcare settings. 

ConvNeXTV2’s strong performance, particularly in 

recall, reflects the efficacy of its attention-based design 

in capturing subtle patterns in mammograms (Woo et 

al., 2023). This is particularly valuable for reducing 

false negatives, which could delay treatment. 

DenseNet121, while slightly less accurate, benefits 

from efficient feature reuse, making it a viable option 

where computational resources are moderately 

constrained (Huang et al., 2017). 

MobileNetV2’s lightweight architecture sacrifices 

only 3.7% accuracy compared to EfficientNetB7, yet 

halves the inference time and reduces parameters by 

95% (Sandler et al., 2018). This trade-off positions it 

as the most practical model for mobile or edge-based 

diagnostic tools, where speed and efficiency are 

paramount. 

5.2 Clinical Implications 

In clinical practice, high recall is often prioritized to 

ensure no cases are missed, making ConvNeXTV2 and 

EfficientNetB7 strong candidates for screening 

applications. However, MobileNetV2’s efficiency 

could enable point-of-care diagnostics, democratizing 

access in underserved regions. DenseNet121 offers a 

balanced alternative for settings with moderate 

computational capabilities. 

5.3 Limitations and Future Directions 

This study is limited by its reliance on the DDSM 

dataset, which may not fully represent the 

heterogeneity of real-world mammograms (e.g., 

varying imaging equipment or patient demographics). 

The 224x224 resolution may also discard fine details 

critical for diagnosis. Future work could explore higher 

resolutions, multi-modal data (e.g., ultrasound, MRI), 

and larger datasets like CBIS-DDSM or INbreast. 

Additionally, ensemble methods combining these 

models or integrating them with radiologist input could 

further enhance performance. 

  

VI. CONCLUSION 
This comparative study reveals that EfficientNetB7 

excels in classification accuracy (94.2%), making it 

ideal for high-stakes diagnostic environments. 

MobileNetV2, with 90.5% accuracy and superior 

efficiency, is best suited for resource-constrained 

applications. ConvNeXTV2 and DenseNet121 offer 

intermediate solutions, balancing performance and 

complexity. These findings underscore the importance 

of aligning model selection with clinical priorities—

accuracy, efficiency, or a hybrid approach. As deep 

learning continues to evolve, integrating these models 

into clinical workflows could significantly advance 

breast cancer detection, ultimately improving patient 

outcomes 
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