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Abstract: This study explores the Daftardar-Jafari Method (DJM) for solving linear and nonlinear higher-order 

ordinary differential equations (ODEs). Unlike traditional perturbation methods, DJM does not rely on small 

parameters, making it highly effective for strongly nonlinear problems. The method constructs a rapidly 

converging iterative sequence, yielding accurate analytical or approximate solutions with reduced computational 

costs. We applied DJM to a range of benchmark problems and compared the results with those obtained using the 

Homotopy Perturbation Method (HPM). The DJM provided significantly higher accuracy, demonstrating its 

superior performance in terms of convergence and computational efficiency. The numerical results, computed 

using Maple software, reinforce the practical advantages of DJM for solving complex higher-order ordinary 

differential equations. In conclusion, DJM is an effective and efficient tool for solving a broad class of higher-

order ordinary differential equations, outperforming traditional methods in terms of accuracy and reliability. 
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I. INTRODUCTION 
 

Ordinary differential equations (ODEs), both linear and 

nonlinear, including higher-order forms [1], play a 

fundamental role in modeling and analyzing dynamic 

systems across various scientific and engineering 

disciplines. These equations describe a wide range of 

phenomena, including mechanical vibrations, fluid 

flow, heat transfer, wave propagation, and control 

processes in robotics and automation. Higher-order 

ODEs frequently arise in structural mechanics, 

aerospace engineering, and electromechanical systems, 

where accurate solutions are essential for optimizing 

designs and ensuring system stability. The complexity 

of solving linear and nonlinear higher-order ODEs has 

long been a challenge, as traditional analytical methods 

often fail to provide explicit solutions. Consequently, 

researchers have focused on developing efficient semi-

analytical and iterative techniques that combine 

analytical accuracy with numerical adaptability. 

Among these, the Variational Iteration Method (VIM) 

[2,3], the Adomian Decomposition Method (ADM) [4-

6], and the Homotopy Perturbation Method (HPM) [7-

14] have gained significant attention due to their ability 

to approximate solutions without requiring linearization 

or small perturbation parameters.  The Variational 

Iteration Method (VIM) constructs iterative correction 

functionals to refine approximations progressively, 

making it effective for a wide class of differential 

equations. However, its convergence speed depends on 

the choice of initial approximations. The Adomian 

Decomposition Method (ADM) decomposes nonlinear 

terms into infinite series of polynomials, simplifying 

the problem into a sequence of solvable components. 

Despite its effectiveness, ADM requires complex 

polynomial calculations, which may limit its efficiency 

for highly nonlinear problems. The Homotopy 

Perturbation Method (HPM) combines homotopy 

theory with perturbation techniques, avoiding small 

parameter dependencies. While HPM is widely used, it 

may still struggle with strongly nonlinear systems when 

the convergence rate is slow. Amidst these techniques, 

the Daftardar-Jafari Method (DJM) [15-17] has 

emerged as a powerful alternative for solving linear and 

nonlinear higher-order ODEs. Unlike traditional 

perturbation-based approaches, DJM does not rely on 

small parameters or complex transformations, making 

it highly efficient for nonlinear systems. The method 

constructs a rapidly converging iterative sequence, 

ensuring high accuracy while reducing computational 

complexity. DJM has been successfully applied to 

various benchmark problems, demonstrating superior 

performance in comparison to other semi-analytical 

methods. Its ability to solve nonlinear ODEs with 

minimal computational effort makes it a valuable tool 

for researchers and engineers alike. This study aims to 

explore the effectiveness of DJM in solving linear and 

nonlinear higher-order ODEs, emphasizing its 

precision and computational advantages. Through 

comparative analysis, we highlight how DJM 

outperforms other methods in terms of convergence 

rate, accuracy, and efficiency. The findings of this 

research reinforce DJM’s applicability in scientific and 

engineering fields, making it a promising approach for 
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tackling complex nonlinear differential equations. This 

paper is organized as follows: Section 2 provides an 

overview of the mathematical framework and 

theoretical principles underlying the Daftardar-Jafari 

Method. Section 3 presents the application of DJM to 

various types of linear and nonlinear higher-order 

ordinary differential equations, including numerical 

results and comparative analysis. Finally, Section 4 

summarizes the main findings of the study and 

discusses potential future research directions, 

highlighting areas where DJM can be further improved 

and extended to more complex problems. 
 

II. METHODOLOGY AND 

FORMULATION  
 

We focus on the following initial value problem that 

expressed in the form: 

𝑢 𝑛  𝑥 = 𝑓 𝑥, 𝑢, 𝑢′ , … , 𝑢 𝑛−1  + 𝑔 𝑥   , , 𝑥 ∈ [0,𝑎]  (1) 

Where 𝑢 is unknown function and 𝑔 is analytical 

function. 

With the initial conditions  
𝑢 0 = 𝛼0   , 𝑢′ 0 = 𝛼1  ,… , 𝑢 𝑛−1  0 = 𝛼𝑛−1       , 𝛼𝑖 ∈ 𝑅 , 𝑖 = 0, 𝑛 − 1           

According to the DJM, by integrating both sides of the 

system (1) with respect to 𝑥 

𝑢(𝑥) =  …
𝑥

0
 
𝑥

0     
𝑛

 𝑓 𝑥, 𝑢, 𝑢′, … , 𝑢
 𝑛−1  + 𝑔 𝑥  𝑑𝑥 … 𝑑𝑥   

𝑛

     

(2) 

Where the nonlinear part  

𝑁(𝑥) =  …

𝑥

0

 

𝑥

0       
𝑛

 𝑓 𝑥, 𝑢, 𝑢′ , … , 𝑢 𝑛−1  + 𝑔 𝑥  𝑑𝑥 …𝑑𝑥     
𝑛

 

And the initial solution is 

𝑢0 𝑥 =  𝛼𝑖
𝑥𝑖

𝑖!

𝑛−1

𝑖=0

+  …

𝑥

0

 

𝑥

0     
𝑛

 𝑔 𝑥  𝑑𝑥… 𝑑𝑥     
𝑛

 

The solution to the (2) is given in the form 
𝑢 =  𝑢𝑖

∞
𝑖=0                             (3) 

By substituting (3) into (2), yields 

 𝑢𝑖

∞

𝑖=0

 𝑥 = 

 …

𝑥

0

 

𝑥

0       
𝑛

 𝑓  𝑥, 𝑢𝑖

∞

𝑖=0

, 𝑢′𝑖

∞

𝑖=0

, … , 𝑢𝑖
 𝑛−1 

∞

𝑖=0

 + 𝑔 𝑥  𝑑𝑥 …𝑑𝑥     
𝑛

 

From this, the following results: 

𝑢0 𝑥 =  𝛼𝑖
𝑥𝑖

𝑖!

𝑛−1

𝑖=0

+ …

𝑥

0

 

𝑥

0       
𝑛

 𝑔 𝑥  𝑑𝑥…𝑑𝑥     
𝑛

 

𝑢1 𝑥 = 𝑁 𝑢0  
𝑢2 𝑥 = 𝑁 𝑢0 + 𝑢1 − 𝑁(𝑢0) 

…………………………………………… 
𝑢𝑚 𝑥 = 𝑁 𝑢0 + ⋯+ 𝑢𝑚−1 − 𝑁 𝑢0 + ⋯+ 𝑢𝑚−2  , 𝑚 = 2,3, … 

For convergence of the DJM [17] 

Lemma  [18].  If 𝑁 is 𝐶∞  in a neighborhood of 𝑢0 and 

 𝑁 𝑛  𝑢0  < 𝐿, for any n and for some real 𝐿 > 0 

and 𝑢𝑖 ≤ 𝑀 < 𝑒−1 , 𝑖 = 1,2, …  then the series  𝑢𝑛
∞
𝑛=0  is 

absolutely convergent and  

 𝑢𝑖 ≤ 𝐿𝑀
𝑛𝑒𝑛−1 𝑒 − 1 ,   𝑛 = 1,2,…  

 

III. TEST PROBLEMS 
 

Example 1 

Consider the following ninth-order initial value 

problem [1] 

𝑢 9  𝑥 = −9𝑒𝑥 + 𝑢(𝑥) ,    0 ≤ 𝑥 ≤ 1           (4) 

Subjects to the initial conditions: 

𝑢 𝑖  0 = 1 − 𝑖 ,     𝑖 = 0,8     
According to the DJM, by integrating both sides of the 

equation (4) with respect to 𝑥 and by using the 

boundary conditions, yields 

𝑢 𝑥 = 10 + 9𝑥 + 4𝑥2 +
7𝑥3

6
+
𝑥4

4
+
𝑥5

24
+
𝑥6

180
+

𝑥7

1680

+
𝑥8

20160
− 9𝑒𝑥 + …  𝑢 𝑥 

𝑥

0

𝑥

0

𝑑𝑥 …𝑑𝑥 

Where  

𝑢0 𝑥 = 10 + 9𝑥 + 4𝑥2 +
7𝑥3

6
+
𝑥4

4
+
𝑥5

24
+
𝑥6

180

+
𝑥7

1680
+

𝑥8

20160
− 9𝑒𝑥  

&𝑁 𝑢 =  …  𝑢 𝑥 
𝑥

0

𝑥

0

𝑑𝑥 …𝑑𝑥 

Then  

𝑢1 𝑥 = 𝑁 𝑢0 =  …  𝑢0 𝑥 
𝑥

0

𝑥

0

𝑑𝑥 …𝑑𝑥

= 9 + 9𝑥 +
9𝑥2

2
+

3𝑥3

2
+

3𝑥4

8
+

3𝑥5

40
+
𝑥6

80

+
𝑥7

560
+ ⋯ 

𝑢2 𝑥 = 𝑁 𝑢0 + 𝑢1 − 𝑁 𝑢0 

= 9 + 9𝑥 + ⋯+
𝑥8

4480
+

𝑥9

40320
+ ⋯− 9𝑒𝑥  

Then the exact solution is 

𝑢 𝑥 =  𝑢𝑖

∞

𝑖=0

 

Table 1. shows the 'one term' , 'two terms' and 'three 

terms'  refer to the number of terms used in the solution 

using the Daftardar-Jafari Method, while the Homotopy 

perturbation Method required 'twelve terms' in the 

series expansion for 𝑢(𝑥) 

Where the exact solution of (4) is 𝑢 𝑥 =  1 − 𝑥 𝑒𝑥  

 
𝑥 Error of DJM 

𝑢0 

𝑛 = 1 

Error of DJM 

𝑢0 + 𝑢1 

𝑛 = 2 

Error of DJM 

𝑢0 + 𝑢1 + 𝑢2 

𝑛 = 3 

Error of 
HPM [1] 
𝑢0 +⋯
+ 𝑢11  

𝑛 = 12 

0 0 0 0 0 

0.1 5.1 × 10−15  2.2 × 10−18  1.3 × 10−20  3.6 × 10−9 

0.2 4.2 × 10−12  7.3 × 10−17  1.0 × 10−19 3.4 × 10−9 

0.3 1.1 × 10−11  4.8 × 10−17  3.8 × 10−17  4.6 × 10−9 

0.4 3.5 × 10−10  5.2 × 10−16  2.3 × 10−16  1.4 × 10−9 

0.5 1.5 × 10−9 9.5 × 10−15  1.4 × 10−16  4.5 × 10−9 

Example 2 
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Consider the following nonlinear tenth-order initial 

value problem [1] 

𝑢 10  𝑥 = 𝑒−𝑥𝑢2(𝑥) ,    0 ≤ 𝑥 ≤ 0.5           (5) 

Subjects to the initial conditions: 

𝑢 𝑖  0 = 1 ,     𝑖 = 0,9     
According to the DJM, by integrating both sides of the 

equation (5) with respect to 𝑥 and by using the 

boundary conditions, yields 

𝑢 𝑥 = 1 + 𝑥 +
𝑥2

2
+
𝑥3

6
+
𝑥4

24
+
𝑥5

120
+
𝑥6

720
+

𝑥7

5040

+
𝑥8

40320
+

𝑥9

362880

+  …  𝑒−𝑥𝑢2(𝑥)
𝑥

0

𝑥

0

𝑑𝑥 …𝑑𝑥 

Where  

𝑢0 𝑥 = 1 + 𝑥 +
𝑥2

2
+
𝑥3

6
+
𝑥4

24
+
𝑥5

120
+
𝑥6

720
+

𝑥7

5040

+
𝑥8

40320
+

𝑥9

362880
 

&𝑁 𝑢 =  …  𝑒−𝑥𝑢2(𝑥)
𝑥

0

𝑥

0

𝑑𝑥 …𝑑𝑥 

Then  

𝑢1 𝑥 = 𝑁 𝑢0 =  …  𝑒−𝑥𝑢0
2(𝑥)

𝑥

0

𝑥

0

𝑑𝑥 …𝑑𝑥

= 172577535989𝑥 −
55295895511𝑥2

2

+
5397936163𝑥3

2
+ ⋯ 

𝑢2 𝑥 = 𝑁 𝑢0 + 𝑢1 − 𝑁 𝑢0 

=
154801588552841313895𝑥4𝑒−𝑥

12
+ ⋯ 

Then the exact solution is 

𝑢 𝑥 =  𝑢𝑖

∞

𝑖=0

 

Table 1. shows the 'one term' , 'two terms' and 'three 

terms'  refer to the number of terms used in the solution 

using the Daftardar-Jafari Method, while the Homotopy 

perturbation Method required 'twelve terms' in the 

series expansion for 𝑢(𝑥) 

Where the exact solution of (5) is 𝑢 𝑥 = 𝑒𝑥  

 

 
𝑥 Error of DJM 

𝑢0 

𝑛 = 1 

Error of DJM 

𝑢0 + 𝑢1 

𝑛 = 2 

Error of DJM 

𝑢0 + 𝑢1 + 𝑢2 

𝑛 = 3 

Error of 

HPM [1] 

𝑢0 +⋯
+ 𝑢11 

𝑛 = 12 

0 0 0 0 0 

0.1 3.2 × 10−16  1.2 × 10−17  3.4 × 10−19 1.4 × 10−6 

0.2 4.1 × 10−14  6.8 × 10−17  4.5 × 10−18  2.7 × 10−6 

0.3 2.8 × 10−12  8.1 × 10−16  9.2 × 10−18  3.7 × 10−6 

0.4 3.9 × 10−11 1.6 × 10−16  7.2 × 10−17  4.4 × 10−6 

0.5 8.7 × 10−10 1.0 × 10−15  1.5 × 10−17  4.5 × 10−6 

 

Example 3 

 

Consider the following nonlinear tenth-order initial 

value problem [1] 

𝑢 12  𝑥 = 2𝑒𝑥𝑢2 𝑥 + 𝑢 3 (𝑥) ,    0 ≤ 𝑥 ≤ 0.5    (6) 

Subjects to the initial conditions: 

𝑢 𝑖  0 =  −1 𝑖  ,     𝑖 = 0,11       
According to the DJM, by integrating both sides of the 

equation (6) with respect to 𝑥 and by using the 

boundary conditions, yields 

𝑢 𝑥 = 1 − 𝑥 +
𝑥2

2
−
𝑥3

6
+
𝑥4

24
−
𝑥5

120
+
𝑥6

720
−

𝑥7

5040

+
𝑥8

40320
−

𝑥9

362880
+

𝑥10

3628800

−
𝑥11

39916800

+  …  2𝑒𝑥𝑢2 𝑥 + 𝑢 3 (𝑥)
𝑥

0

𝑥

0

𝑑𝑥 …𝑑𝑥 

Where  

𝑢0 𝑥 = 1 − 𝑥 +
𝑥2

2
−
𝑥3

6
+
𝑥4

24
−
𝑥5

120
+
𝑥6

720
−

𝑥7

5040
+

𝑥8

40320

−
𝑥9

362880
+

𝑥10

3628800
−

𝑥11

39916800
 

&𝑁 𝑢 =  …  2𝑒𝑥𝑢2 𝑥 + 𝑢 3 (𝑥)
𝑥

0

𝑥

0

𝑑𝑥 …𝑑𝑥 

Then  

𝑢1 𝑥 = 𝑁 𝑢0 =  …  2𝑒𝑥𝑢0
2 𝑥 + 𝑢0

 3 (𝑥)
𝑥

0

𝑥

0

𝑑𝑥 …𝑑𝑥

= 2064138802538𝑥
− 33320055241771𝑥2 + ⋯ 

Then the exact solution is 

𝑢 𝑥 =  𝑢𝑖

∞

𝑖=0

 

Table 1. shows the 'one term' , 'two terms' and 'three 

terms'  refer to the number of terms used in the solution 

using the Daftardar-Jafari Method, while the Homotopy 

perturbation Method required 'twelve terms' in the 

series expansion for 𝑢(𝑥) 

Where the exact solution of (6) is 𝑢 𝑥 = 𝑒−𝑥  
𝑥 Error of DJM 

𝑢0 

𝑛 = 1 

Error of DJM 

𝑢0 + 𝑢1 

𝑛 = 2 

Error of HPM [1] 

𝑢0 +⋯+ 𝑢11 

𝑛 = 12 

0 0 0 0 

0.1 3.6 × 10−16  3.4 × 10−18  3.5 × 10−7 

0.2 1.2 × 10−16  6.5 × 10−18 6.1 × 10−7 

0.3 9.2 × 10−15  1.2 × 10−17 9.9 × 10−7 

0.4 9.6 × 10−14  2.1 × 10−17 7.2 × 10−7 

0.5 8.2 × 10−13  4.9 × 10−16 1.5 × 10−7 

One of the key advantages of the Daftardar-Jafari 

Method (DJM) is its exceptional convergence rate, 

which dramatically reduces the number of iterations 

required to obtain an accurate solution compared to 

traditional techniques, such as the Homotopy 

Perturbation Method (HPM). In our numerical tests, 

DJM consistently demonstrated faster convergence and 

higher accuracy, particularly for complex nonlinear 

systems. Moreover, DJM proved to be more 

computationally efficient, requiring less time to reach 

the desired precision compared to HPM, which often 

faced challenges with higher-order nonlinearities. This 

outstanding performance in both convergence speed 

and computational cost positions DJM as an ideal 

method for solving nonlinear ordinary differential 

equations, especially in practical applications where 

computational resources are limited. 
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IV.  CONCLUSION AND 

DISCUSSION 
 

In this study, the Daftardar-Jafari Method (DJM) was 

employed to solve higher-order linear and nonlinear 

ordinary differential equations (ODEs). The findings 

confirm that DJM delivers highly accurate solutions 

while significantly reducing computational complexity 

compared to conventional approaches. By generating a 

rapidly converging iterative sequence, DJM ensures 

high precision with fewer iterations, making it a 

powerful and efficient method for tackling complex 

mathematical problems. The effectiveness of DJM was 

validated through various benchmark problems, where 

it demonstrated superior performance in solving 

intricate nonlinear ODEs. Additionally, a comparative 

analysis with the Homotopy Perturbation Method 

(HPM) highlighted DJM’s enhanced accuracy and 

efficiency. Given its simplicity, fast convergence, and 

broad applicability, DJM emerges as a reliable tool for 

solving higher-order differential equations in scientific 

and engineering domains. Future research could extend 

DJM’s applications to even more complex differential 

equations, exploring its theoretical foundations and 

convergence properties in greater depth to further 

optimize its performance and applicability. 
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