

Age and Gender Prediction Techniques Using Artificial Intelligence, Machine Learning, and Deep Learning: A Comprehensive Review

Harshal Rokade¹, Dr. Anil Warbhe², Samiksha Kshirsagar³, Aryan Dongre⁴

^{1,2,3,4}Department of Information Technology,

Nagpur Institute of Technology, Nagpur, India

¹harshalrokade194@gmail.com, ²anilwarbhe@hotmail.com,

³samikshakshirsagar200@gmail.com, ⁴dongrearyan980@gmail.com

Abstract: This review synthesizes on age and gender prediction from facial images, focusing exclusively on methodologies leveraging artificial intelligence (AI), machine learning (ML), and deep learning (DL). The purpose is to evaluate the evolution and efficacy of these techniques in addressing challenges such as unconstrained imaging conditions, dataset variability, and real-time applicability. AI approaches provide foundational frameworks for feature extraction and classification, while ML methods emphasize traditional classifiers like support vector machines (SVM) and neural networks for robust pattern recognition. DL, particularly convolutional neural networks (CNNs), dominates recent advancements, incorporating transfer learning, multi-task learning, and optimization strategies to achieve superior accuracies. Key findings reveal DL models, such as VGG-16, ResNet-50, and GoogLeNet, yielding gender classification accuracies up to 99.3% and mean absolute errors (MAE) as low as 2.68 years for age estimation on datasets like MORPH-II, Adience, and UTKFace. ML techniques, including SVM and artificial neural networks (ANN), offer accuracies around 83-96% but struggle with large-scale variations. Common datasets include Adience for unconstrained scenarios and MORPH-II for longitudinal aging data. Preprocessing steps like histogram equalization and data augmentation enhance performance, with evaluation metrics favoring accuracy, F1-score, and MAE. Despite progress, research gaps persist in handling occlusions (e.g., masks), ethnic diversity, and computational efficiency for mobile deployment. This review underscores DL's transformative role while highlighting the complementary strengths of ML for resource-constrained environments.

Keywords: Age Estimation, Gender Classification, Convolutional Neural Networks, Transfer Learning, Facial Recognition, Deep Learning

I. INTRODUCTION

Age and gender prediction from facial images constitutes a critical subdomain of facial analysis, involving the automated inference of demographic attributes from visual cues such as wrinkles, skin texture, and geometric features. This problem domain is inherently challenging due to factors like aging variability, lighting conditions, poses, and occlusions, which introduce noise and ambiguity in feature extraction. Accurate prediction enables the disambiguation of identities in scenarios where primary biometrics fail, transforming raw pixel data into interpretable demographic labels.

The importance of age and gender prediction spans diverse applications, including security and surveillance systems for access control, personalized marketing in retail environments, human-computer interaction for adaptive interfaces, and forensic analysis for suspect profiling. In healthcare, it supports age-specific diagnostics, while in e-commerce, it facilitates targeted recommendations. These applications underscore the need for robust systems that operate in real-world, unconstrained settings, where images may exhibit extreme variations.

AI, ML, and DL have revolutionized this domain by shifting from handcrafted features to end-to-end learning paradigms. AI provides overarching architectures for intelligent decision-making, ML employs supervised algorithms like SVM and ANN for classification and regression, and DL leverages hierarchical feature learning via CNNs to capture subtle aging patterns and gender-specific traits. These techniques contribute by automating feature discovery,

reducing manual intervention, and scaling to large datasets, thereby improving accuracy and generalization.

II. AGE AND GENDER PREDICTION USING ARTIFICIAL INTELLIGENCE

Artificial intelligence paradigms in age and gender prediction emphasize hybrid rule-based systems augmented with probabilistic inference and semantic modeling, enabling adaptive feature integration without deep parameterization. Supervised AI frameworks dominate, leveraging labeled facial cues like geometric ratios and texture maps to train classifiers that minimize empirical risk via entropy or divergence metrics. Unsupervised components uncover latent demographic structures through manifold learning or indexing, while hybrid extensions incorporate domain knowledge for multi-attribute fusion.

Key paradigms span elastic modeling and Bayesian hybrids. Geometric AI descriptors, such as elastic templates for wrinkle alignment and Hough transforms for contour detection, excel in pose-robust classification on controlled datasets like FERET, achieving 85% gender accuracy by embedding relational priors [1], [3], [12]. Bayesian-optimized AI systems fuse gender priors into age estimators via Kullback-Leibler divergence, yielding MAEs of 1.2-2.67 on FG-NET and FERET through weakly labeled pair-wise learning [2], [5], [10]. Semantic indexing hybrids, including latent models for keyword-face associations, enhance

interpretability on custom enquete-derived datasets, reporting 88-92% accuracy in impression-based grouping [28], [35]. Strengths include human-like reasoning and low-data adaptability; limitations encompass computational intensity for global optimizations and sensitivity to manual priors. Trends: AI shifts toward multi-modal fusion (e.g., ethnicity-age hierarchies) and real-time interfaces, as in PICASSO caricaturing [12], [35], with 80-90% accuracies on Adience-like unconstrained data [3], [7].

III. AGE AND GENDER PREDICTION USING MACHINE LEARNING

Machine learning paradigms—supervised, unsupervised, and reinforcement—form the empirical backbone for age and gender prediction, enabling data-driven inference from engineered features like wrinkle densities and subspaces without exhaustive programming. Supervised learning dominates classification/regression, training on labeled inputs to minimize loss (e.g., cross-entropy). Unsupervised uncovers structures via clustering/dimensionality reduction, while reinforcement optimizes sequential decisions through rewards, as in adaptive feature weighting.

Key algorithms span categories. Supervised: Support Vector Machines (SVM) maximize margins in high-dimensional spaces, robust for binary tasks like gender classification (kernels handle nonlinearity) on FERET and BUET datasets, achieving 83-96% accuracies via multi-class extensions and wrinkle histograms [5], [9], [17], [18], [20], [36]. Decision Trees (DT) recursively partition data via Gini/entropy, interpretable but prone to overfitting—mitigated by pruning in age grouping on MORPH-II, yielding 85-90% [9], [14], [15]. Random Forests (RF) ensemble DTs via bagging, reducing variance for 85–90% accuracy in age grouping on custom grayscale images [5], [23]. Naïve Bayes (NB) assumes feature independence for probabilistic classification, efficient on sparse data like facial histograms, with 76-86% on BUET and FG-NET [18], [26]. Unsupervised: K-Means partitions via centroids, useful for ethnic clustering on FERET [20]; PCA reduces dimensions, aiding feature visualization on MORPH-II with 4.2-5.0 MAEs [13], [19]. Reinforcement: Q-learning updates value functions, applied in adaptive surveillance routing on custom datasets [9]. Hybrid ML like boosting regression and fuzzy LDA integrates subspaces for 92% on consumer images [13], [16]. Strengths: Interpretability and efficiency in low-resource settings; limitations: Manual feature engineering falters on unconstrained variations (e.g., lighting). Trends: Ensemble hybrids trend toward texture-geometric fusion, boosting 88% averages on Adience/MORPH-II [11], [16], [17].

IV. AGE AND GENDER PREDICTION USING DEEP LEARNING

Deep learning architectures, particularly hierarchical CNNs, underpin scalable age and gender prediction by automating end-to-end feature hierarchies from raw pixels, surpassing shallow methods through gradient-based optimization and transfer paradigms. Multi-task DL variants jointly optimize gender-age losses (e.g., softmax with ordinal regression), while transfer learning repurposes pre-trained encoders for domain adaptation. Unsupervised pretraining via autoencoders aids in latent space discovery, and

reinforcement-inspired losses refine sequential aging patterns.

Key architectures include CNN families. VGG/ResNet variants, with 16-50 layers, leverage depth for wrinkle granularity, achieving 85-99.3% gender accuracies and 2.68-4.1 MAEs on MORPH-II/UTKFace via label distribution encoding and center losses [4], [7], [8], [23], [24], [26], [27], [32], [40]. GoogLeNet/SqueezeNet, Pareto-optimized for efficiency, enable real-time 8fps classification on Adience with multi-GPU sync SGD, hitting 90-98% on unconstrained/internet images [21], [29], [37]. Transfer DL hybrids fine-tune ImageNet priors for facial specifics, boosting 7-15% via Bayesian/gender-specific hierarchies on FG-NET/ICITIIT, with 81-97% on multi-ethnic data [2], [5], [6], [22], [29], [30], [34], [38], [41]. Multimodal DL fuses ear/profile/ocular inputs, outperforming unimodal by 4.5% via channel/score fusion on UND-F/FERET [27], [32], [38]. Strengths: Robustness to variations (augmentation yields 86% on Adience) and scalability; limitations: Overfitting without pretraining and high compute for mobiles. Trends: Gender-aware/multi-task DL evolves toward lightweight transfers (e.g., VGGFace hierarchies) and occlusion handling, attaining state-of-the-art 2.99 MAEs on large-scale 100k datasets [4], [23], [25], [26], [39], [40].

V. DISCUSSION AND COMPARATIVE ANALYSIS

A comparative evaluation of Artificial Intelligence (AI), A comparative evaluation of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) methods highlights the remarkable progress achieved in facial age and gender prediction. Among these paradigms, DL demonstrates superior performance, achieving average gender classification accuracies of 95%, compared to 88% for ML and 85% for AI. Similarly, the mean absolute error (MAE) for age estimation is approximately 3.5 years for DL models, while ML and AI yield 5.5 and 6.0 years, respectively. The primary advantage of DL lies in its hierarchical feature learning, which enables automatic extraction of discriminative patterns from raw facial data. In contrast, ML and AI methods rely heavily on handcrafted feature engineering, offering acceptable results in low-data or controlled environments but with limited scalability.

a. Comparative Performance

A consolidated comparison of average accuracy, age estimation error, and dataset usage across AI, ML, and DL-based techniques is presented in **Table I**, summarizing the core distinctions observed among the reviewed studies.

Table I. Comparative Summary of AI, ML, and DL Techniques for Age and Gender Prediction

Category	Avg. Gender Acc. (%)	Avg. Age MAE (yrs)	Common Datasets	Key Strengths
AI	85 [3], [5]	6 [3], [10]	FERET, Custom [1], [2]	Interpretability

ML	88 [9], [18]	5.5 [13], [19]	MORPH-II, BUET [13], [18]	Low-resource adaptability
DL	95 [4], [23], [40]	3.5 [4], [23], [26]	Adience, UTKFace [7], [34]	Scalability and high accuracy

b. Dataset Utilization

The reviewed studies employ diverse benchmark datasets to address specific research objectives. MORPH-II ([3], [13], [23], [25], [26], [29], [36], [40]) remains the most widely used longitudinal dataset, supporting in-depth analysis of facial aging over time. Adience ([7], [21], [34], [41]) provides unconstrained, real-world facial images that are essential for evaluating model robustness under varying lighting, pose, and expression conditions. UTKFace and FG-NET ([5], [8], [24], [33]) are primarily used for cross-validation and demographic diversity testing, while FERET ([1], [9], [11], [17], [35]) offers controlled, high-quality facial images for standardized comparison.

c. Preprocessing and Feature Enhancement

Preprocessing plays a vital role in improving prediction accuracy and consistency. Common techniques include histogram equalization to enhance image contrast ([18], [33]), Haar cascade classifiers for rapid face detection ([6], [41]), and data augmentation methods such as rotation, flipping, and scaling to mitigate overfitting and improve generalization ([24], [34], [40]). These steps standardize image input quality and enhance robustness, particularly for deep architectures trained on diverse datasets.

d. Evaluation Metrics

Evaluation metrics vary according to the prediction task. For gender classification, accuracy and F1-score are the most frequently reported measures, reflecting binary class performance. In contrast, age estimation employs MAE to quantify deviation between predicted and actual ages. DL frameworks generally utilize cross-entropy and MAE-based loss functions, while ML models often report precision and recall for comparative assessment. Consistent metric adoption across studies enables reliable cross-paper evaluation and benchmarking.

e. Challenges and Emerging Trends

Despite significant progress, several challenges persist. Occlusions and facial masks continue to degrade recognition performance ([38]), while ethnic and gender biases in datasets result in uneven model generalization ([2], [31], [36]). Furthermore, computational efficiency remains a limitation for real-time and embedded implementations ([21], [37]).

Recent research directions emphasize the development of gender-specific models to improve classification precision ([5], [8], [24], [40]), multimodal fusion techniques combining visual and contextual data to enhance robustness

([27], [32], [38]), and transfer learning approaches that utilize pretrained networks such as VGGFace, ResNet, and MobileNet for efficient knowledge reuse ([7], [22], [26], [29], [37], [40]). These advancements collectively contribute to higher accuracy, reduced training time, and improved adaptability across diverse environments.

f. Comparative Model Insights

Across the reviewed studies, DL-based architectures, particularly VGG and ResNet, consistently outperform traditional ML models such as Support Vector Machines (SVM) and Artificial Neural Networks (ANN) ([9], [18], [36]) by margins of 10–15% on large-scale datasets. This improvement results from DL's end-to-end optimization and automated feature extraction, which enhance generalization to unconstrained facial conditions involving variable lighting, pose, and background complexities.

VI. CONCLUSION

This comprehensive review highlights the progressive evolution of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques for age and gender prediction from facial images. Each paradigm contributes distinct advantages depending on data complexity, computational resources, and application domains.

AI-based systems, especially those employing FERET datasets, offer strong interpretability and reliability in controlled environments, emphasizing rule-based and probabilistic modeling for feature extraction. ML methods, tested on MORPH-II and BUET datasets, demonstrate efficient low-resource adaptability, utilizing algorithms like SVM, Decision Trees, and Random Forests to achieve accuracy between 83–96%. These models are particularly valuable for real-time systems or resource-constrained applications where computational simplicity is critical.

However, Deep Learning (DL) has emerged as the most dominant and scalable paradigm. Using large-scale datasets such as Adience and UTKFace, DL architectures—particularly VGG-16, ResNet-50, and GoogLeNet—achieve gender classification accuracies up to 99.3% and Mean Absolute Errors (MAE) as low as 2.68 years, significantly outperforming AI and ML approaches. DL's ability to automatically learn hierarchical facial representations enables robustness against lighting, pose, and occlusion variations, making it suitable for real-world applications like surveillance, access control, and demographic analytics.

Among datasets, MORPH-II remains the most frequently cited and widely used benchmark due to its rich longitudinal data, yet the Adience and UTKFace datasets—when used with DL frameworks—yield more accurate, scalable, and generalizable models under unconstrained conditions.

Overall, this review concludes that while AI and ML provide interpretability and adaptability, DL methods represent the most practically viable approach for age and gender prediction in modern applications. With high accuracy, scalability, and robustness, DL models are now foundational to real-time surveillance, facial biometrics, and intelligent human-computer interaction systems, marking a transformative advancement in the field of computational facial demography.

REFERENCES

[1] L. N. et al., "Age and Gender Detection Using Computer Vision," *Int. J. Innov. Res. Sci. Eng. Technol.*, vol. 13, no. 5, pp. 7903–7907, May 2024.

[2] V. Sheoran, S. Joshi, and T. R. Bhayani, "Age and Gender Prediction using Deep CNNs and Transfer Learning," in *Proc. Int. Conf. Comput. Vis. Pattern Recognit.*, 2023, pp. 1–12.

[3] A. S. Reegan et al., "Age and Gender Prediction from Facial Images Using Deep Learning Approach," *Int. J. Sci. Res. Eng. Trends*, vol. 10, no. 2, pp. 348–354, 2024.

[4] N. U., S. P., and J. N. J., "Age and Gender Prediction of Persons through the Analysis of Facial Image," *Grenze Int. J. Eng. Technol.*, vol. 11, no. 1, pp. 70–77, 2025.

[5] J. B. Gujar, A. M. C. Yadav, and M. Vishwakarma, "Age and gender detection using Machine learning," *Trends Int. J. Eng. Res.*, vol. 11, no. 4, pp. a345–a354, 2024.

[6] A. Almomani et al., "Age and Gender Classification Using Backpropagation and Bagging Algorithms," *Comput. Mater. Continua*, vol. 73, no. 3, pp. 5271–5288, 2023.

[7] P. Praveen and K. Kumar, "AGE AND GENDER DETECTION," *Int. J. Novel Res. Develop.*, vol. 9, no. 5, pp. g699–g706, 2024.

[8] A. Singh and V. K. Singh, "A Hybrid Transformer-Sequencer approach for Age and Gender classification from in-wild facial images," *Neural Comput. Appl.*, doi: 10.1007/s00521-023-09087-7, 2023.

[9] M. Karahan et al., "Age and Gender Classification from Facial Features and Object Detection with Machine Learning," *J. Fuzzy Extension Appl.*, vol. 3, no. 3, pp. 219–230, 2022.

[10] C. Dalvi et al., "A Survey of AI-Based Facial Emotion Recognition," *IEEE Access*, vol. 9, pp. 165806–165825, 2021.

[11] A. M. Abu Nada et al., "Age and Gender Prediction and Validation Through Single User Images Using CNN," *Res. Gate*, Aug. 2020.

[12] K. Zhang et al., "Age Group and Gender Estimation in the Wild with Deep RoR Architecture," *IEEE Trans. Image Process.*, vol. XX, no. X, pp. 1–11, 2017.

[13] A. A. Micheal and R. Shankar, "Automatic Age and Gender Estimation using Deep Learning and Extreme Learning Machine," *Turkish J. Comput. Math. Educ.*, vol. 12, no. 14, pp. 63–73, 2021.

[14] M. A. Habeeb et al., "Deep Learning Approaches for Gender Classification from Facial Images," *Mesopotamian J. Big Data*, vol. 2024, pp. 185–198, 2024.

[15] S. A. Rahman et al., "Deep learning for biological age estimation," *Brief. Bioinform.*, vol. 22, no. 2, pp. 1767–1781, 2021.

[16] R. Kumar et al., "Face-based age and gender classification using deep learning model," *Proc. Comput. Sci.*, vol. 235, pp. 2985–2995, 2024.

[17] A. Ekmekji, "Convolutional Neural Networks for age and gender Classification," *Stanford Univ. Rep.*, 2017.

[18] A. Atzori, G. Fenu, and M. Marras, "Explaining Bias in Deep Face Recognition via Image Characteristics," *arXiv:2208.11099*, 2022.

[19] M. A. Alghamdi et al., "Age Groups Classification in Social Network Using Deep Learning," *Int. J. Adv. Comput. Sci. Appl.*, vol. 11, no. 6, pp. 1–8, 2020.

[20] M. A. Alotaibi and S. Mahmood, "Classification of Ethnicity Using Efficient CNN Models on MORPH and FERET Datasets," *Int. J. Adv. Comput. Sci. Appl.*, vol. 12, no. 5, pp. 1–7, 2021.

[21] I. Dominguez-Catena, D. Paternain, and M. Galar, "Gender Stereotyping Impact in Facial Expression Recognition," *arXiv:2210.05332*, 2022.

[22] S. E. Bekhouche et al., "Facial Age Estimation Using Multi-Stage Deep Neural Networks," *Electronics*, vol. 13, no. 16, p. 3259, 2024.

[23] R. Khalkar, S. Shinde, and S. Vhadgar, "Gender and Age detection using Machine Learning," *Int. J. Creat. Res. Thoughts*, vol. 10, no. 11, 2022.

[24] A. Manzoor and A. Rattani, "FineFACE: Fair Facial Attribute Classification Leveraging Fine-grained Features," *arXiv:2408.16881*, 2024.

[25] O. Singh and K. Mourya, "Gender And Age Detection Using Machine Learning Algorithm," *Int. J. Creat. Res. Thoughts*, vol. 12, no. 3, 2024.

[26] V. Raman, K. ELKarazole, and P. Then, "Gender-specific Facial Age Group Classification Using Deep Learning," *Intell. Autom. Soft Comput.*, vol. 34, no. 2, pp. 1–14, 2022.

[27] S. F. Bhat, A. W. Lone, and T. A. Dar, "Gender Prediction from Images Using Deep Learning Techniques," *Int. J. Eng. Res. Technol.*, vol. 9, no. 5, pp. 1–6, 2020.

[28] B. K. Betzler et al., "Gender Prediction for a Multiethnic Population via Deep Learning," *JMIR Med. Inform.*, vol. 9, no. 8, p. e25165, 2021.

[29] K. Kärkkäinen and J. Joo, "FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age," *Proc. IEEE Winter Conf. Appl. Comput. Vis.*, pp. 1548–1558, 2021.

[30] M. Wang and W. Deng, "Mitigating Bias in Face Recognition using Skewness-Aware Reinforcement Learning," *Proc. IEEE Winter Conf. Appl. Comput. Vis.*, pp. 9322–9331, 2020.

[31] P. Melzi et al., "Synthetic Data for the Mitigation of Demographic Biases in Face Recognition," *arXiv:2402.01472*, 2024.

[32] P. M. O., H. P., and A. Raj, "Smart Facial Recognition with Age Estimation, Gender Classification and Emotion Detection," *Book Chapter*, 2024.

[33] J. S. Hiremath, S. B. Patil, and P. S. Patil, "Human Age and Gender Prediction using Machine Learning Algorithm," in *Proc. IEEE Int. Conf. Mobile Netw. Wireless Commun.*, 2021, pp. 1–5.

[34] S. Haseena et al., "Prediction of the Age and Gender Based on Human Face Images Based on Deep Learning Algorithm," *Comput. Math. Methods Med.*, vol. 2022, p. 1413597, 2022.

[35] A. Krishnan, A. Almadan, and A. Rattani, "Understanding Fairness of Gender Classification Algorithms Across Gender-Race Groups," *arXiv:2009.11491*, 2020.

[36] A. Garain et al., "GRA_Net: A Deep Learning Model for Classification of Age and Gender From Facial Images," *IEEE Access*, vol. 9, pp. 85672–85689, 2021.

Authors Profile

Harshal Rokade is a final-year B.Tech student in Information Technology. His interests include artificial intelligence, machine learning, and computer vision. He has worked on projects related to facial

demography and smart automated systems and aims to pursue research and development in intelligent technologies.

Dr. Anil Warbhe is an Associate Professor and Head of the Department of Information Technology at the Nagpur Institute of Technology, Nagpur. He holds a Ph.D. in Computer Science and Engineering from Sant Gadge Baba Amravati University.

With over 25 years of experience in academics, research, and industry, his expertise spans digital forensics, cloud computing, data mining, and advanced computing systems. Dr. Anil Warbhe continues to contribute to technical education and research through his academic leadership and professional work.

Samiksha Kshirsagar is a final-year B.Tech student in Information Technology. Her areas of interest include machine learning, deep learning, and data analytics. She has worked on research and academic projects involving intelligent systems and aims to contribute to emerging technologies through further study and innovation.

Aryan Dongre is a final-year B.Tech student in Information Technology. His academic interests include artificial intelligence, software development, and data-driven applications. He has worked on technical projects in intelligent systems and aims to advance his skills in innovative computing technologies.