

An Image Contrast Enhancement Approaches-A Comprehensive Survey

Lalit Mann Singh¹, Rupinder Kaur²

¹Student, Department of CSE/IT, BBSBEC, Fatehgarh Sahib, Punjab, India

lalitmann19@gmail.com

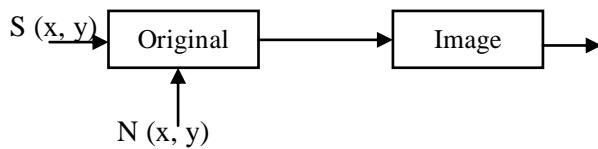
²Assistant Professor, Department of CSE/IT, BBSBEC, Fatehgarh Sahib, Punjab, India

rupinder.randhawa@bbsbec.ac.in

Abstract: *Image Enhancement is a standout amongst the most imperative and troublesome procedures in picture research. The point of picture improvement is to enhance the visual appearance of a picture, or to give a superior change representation for future mechanized picture handling. Numerous pictures like restorative pictures, satellite pictures, aeronautical pictures and even genuine photos experience the ill effects of poor difference and noise. It is important to upgrade the difference and uproot the commotion to build picture quality. A standout amongst the most essential stages in therapeutic pictures recognition and investigation is Picture Upgrade procedures which enhances the quality (clarity) of pictures for human review, uprooting smudging and noise, expanding differentiation, and uncovering subtle elements are samples of improvement operations. Contrast Upgrade is one of most imperative issues in Picture Transforming. The methodology of picture complexity upgrade enhances the difference of a picture and draws out the shrouded points of interest which prompts enhanced visual appearance without expansion of undesirable commotion. There exist various decisions for enhancing the nature of picture however the technique utilized for Upgrade is issue subordinate. This paper gives the study of different picture contrast improvement methods with the condition of specialty of past utilized strategies.*

Keywords: *Genetic Algorithm, Image Enhancement, Neural Network.*

I. INTRODUCTION


Picture overhaul issue can be arranged as takes after: given an information low quality picture and the yield splendid picture for specific applications. It is most likely comprehended that photo overhaul as an element subject in restorative imaging has gotten much thought recently. The fact of the matter is to upgrade the visual appearance of the photo, or to give an "unrivaled" change representation for future motorized picture changing, for instance, examination, distinguishing proof, division and affirmation. Likewise, it helps examinations establishment information that is pivotal to grasp item direct without obliging lavish human visual evaluation [1]. Finishing picture overhaul seeing under low quality picture is a trying issue as a consequence of these reasons. Due to low distinction, we can't unmistakably think objects from the faint establishment. Most shading develop schedules will fail in light of this matter if the shading of the things and that of the establishment are near. The review of open frameworks is in light of the current techniques for

picture change, which can be described into two general classes: Spatial based space picture redesign and Repeat based range picture overhaul. Spatial based region picture change meets expectations clearly on pixels. The essential purpose of enthusiasm of spatial based range procedure is that they astutely simple to grasp and the unconventionality of these methods is low which bolsters consistent executions. Regardless, these techniques generally needs in giving palatable force and elusiveness necessities.

II. NOISE

Picture commotion is arbitrary variety of brilliance or shading data in pictures, and is generally a part of electronic noise [2]. Haphazardly divided dots, called commotion, can show up in advanced pictures. At the point when noise is available, picture subtle element and clarity are lessened, now and then fundamentally. Commotion is most detectable in even regions of shading, for example, shadows. Noise in picture: $w(x, y) = s(x, y) + n(x, y)$ Where $s(x, y)$ is the first flag, $n(x, y)$

y) signifies the commotion acquainted into the sign with produce the ruined picture $w(x, y)$, and (x, y) speaks to the pixel area.

Figure 1: Image with Noise

The picture $s (x, y)$ is smeared by a straight operation and noise $n(x, y)$ is added to frame the corrupted picture $w(x, y)$.

A. Gaussian noise

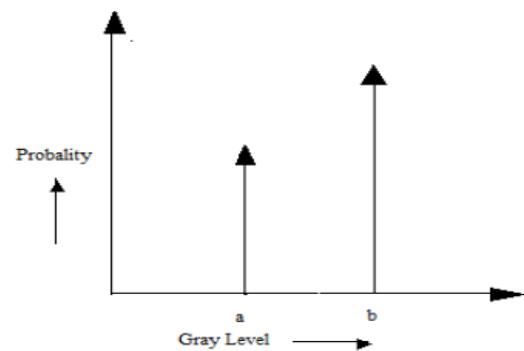

Gaussian noise is uniformly circulated over the sign. This implies that every pixel in the loud picture is the aggregate of the genuine pixel quality and an irregular Gaussian appropriated commotion esteem [3].

Figure 2: Gaussian Noise

B. Salt-and-pepper noise

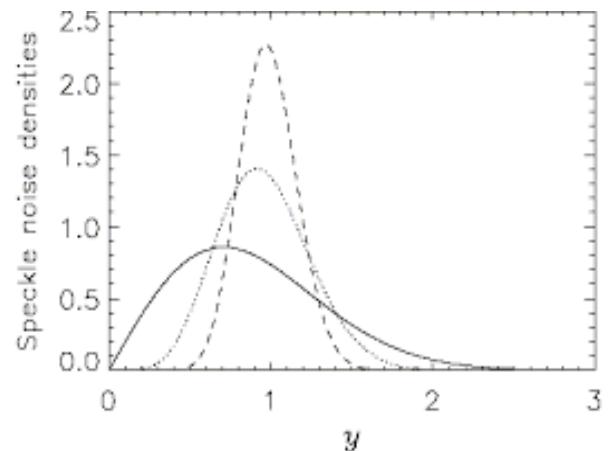

Salt and pepper noise is a form of noise typically seen on images. It represents itself as randomly occurring white and black pixels. An effective noise reduction method for this type of noise involves the usage of a median filter or a contra harmonic mean filter [4]. Salt and pepper noise creeps into images in situations where quick transients, such as faulty switching, take place.

Figure3: Salt-and-pepper noise

C. Speckle noise

Speckle noise [2] [3] is multiplicative noise. This kind of noise happens in all reasonable imaging frameworks, for example, laser, acoustics and SAR (Synthetic Aperture Radar) imagery.

Figure4: Speckle noise

The wellspring of this noise is credited to arbitrary impedance between the sound returns. Completely created dot commotion has the normal for multiplicative noise.

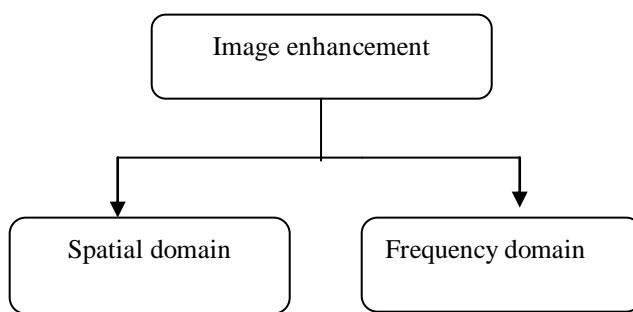
III. IMAGE ENHANCEMENT METHODS

Image Enhancement is among the smoothest and most encouraging regions of advanced picture transforming. Fundamentally, the idea a short time later improvement methods is to bring out detail that is hidden, or essentially to concentrate on specific highlights of enthusiasm for a picture [4]. A no doubt understood case of improvement is the point at which we expand the difference of a picture in light of the fact that it looks better. It must be remember that improvement is an exceptionally subjective range of picture

transforming [5]. The enhancement methods can broadly be divided into the following two categories:

1. Spatial Domain Methods
2. Frequency Domain Methods

In spatial domain techniques, we directly deal with the image pixels. In this method pixel values are manipulated to get desired enhancement results. In frequency domain methods, the image is first converted into frequency domain. In this process, the Fourier Transform of the image is computed first. All of the required enhancement operations are performed on the Fourier transform of the image and then the Inverse Fourier transform is performed to get back the resultant image. All required enhancement operations are performed so that modification is done in the contrast of an image, in brightness of an image etc. As a consequence the pixel value (intensities) of the output image will be modified according to the transformation function applied on the input values [6].


Image enhancement simply means, transforming an image f into an image g using X . (Where X is the transformation. The pixel values in images f and g are denoted by r and s , respectively).

The pixel values r and s are related by the expression,

$$s = X(r)$$

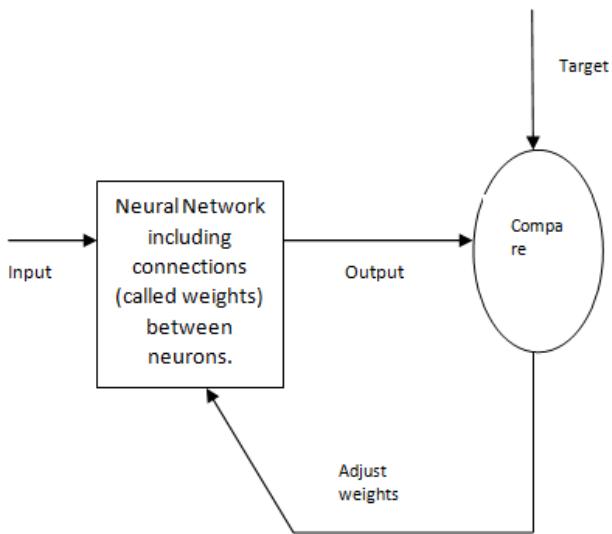
Where X is a transformation which maps a pixel value r into a pixel value s .

The results of above transformation are mapped into the grey scale range as we are dealing here only with grey scale digital images. Therefore, the results must be mapped back into the range $[0, L-1]$, where $L=2^k$, k being the number of bits in the image being considered. Therefore, for an 8-bit image the range of pixel values will be $[0, 255]$.

Figure 5: Image enhancement categories

Many different, often elementary and heuristic methods are used to improve images a little bit. The problem is, of course, not very much clear, as there is no well-

planned measure for image quality. Here, we discuss a few techniques that have shown to be useful both for the human observer and/or for machine recognition. These methods are depends on problems: a method that works fine in one case may be completely inadequate for another problem.


IV. GENETIC ALGORITHM

Genetic algorithms are motivated by Darwin's hypothesis about development. Answer for an issue explained by genetic algorithms is advanced. Algorithm begins with a situated of arrangements (spoke to by chromosomes) called population. Arrangements from one populace are taken and used to frame another population.

1. **[Start]** Produce arbitrary population of n chromosomes (suitable answers for the issues).
2. **[Fitness]** Assess the fitness $f(x)$ of every chromosome x in the population.
3. **[New population]** Make another populace by rehashing after ventures until the new populace is finished.
 - a) **[Selection]** Select two guardian chromosomes from a populace as indicated by their wellness (the better wellness, the greater opportunity to be chosen).
 - b) **[Crossover]** With a hybrid likelihood traverse the folks to shape another posterity (kids). On the off chance that no hybrid was performed, posterity is an accurate duplicate of folks.
 - c) **[Mutation]** With a transformation likelihood change new posterity at every locus (position in chromosome).
 - d) **[Accepting]** Put new posterity in another populace.
4. **[Replace]** Utilization new produced population for a further run of algorithm.
5. **[Test]** If the end condition is fulfilled, **stop**, and return the best arrangement in current population.
6. **[Loop]** Go to step 2.

V. NEURAL NETWORK

Neural frameworks are made out of clear segments which work parallel. A neural framework can be arranged to perform a particular limit by changing the estimations of the weights between parts. Framework limit is controlled by the relationship between parts. There are order limits used to convey imperative yield.

Figure 6: Neural Net Block Diagram

Planning can be either coordinated or unsupervised [7]. In coordinated planning structure adjusts by endeavoring to predict results for known delineations. Structure differences its expectations and the known results and increases from is misunderstandings. In unsupervised get ready structure no yield or result is exhibited as a part of planning technique. With the delta rule, as with diverse sorts of back spread, "learning" is an overseen procedure that happens with each cycle or "age" (i.e. each time the framework is given another data outline) through a forward incitation stream of yields, and the retrogressive slip causing of weight changes. Essentially, when a neural framework is at first given a case it makes a subjective "assessment" in admiration to what it might be. It then sees how far its answer was from the certifiable one and makes a fitting acclimation to its affiliation weights. Inside every hid layer center point is a sigmoid institution limit which delights framework activity and helps it to be stable in nature.

VI. RELATED WORK

[8]. T. Peynot"J. Michael Fitzpatrick,Derek L. G. Hill and Calvin R. Maurer, Jr.""**Image Restoration**"**"Vol 4 2007"** says that the current state of the field of medical image restoration. Restoration is defined as the determination of a geometrical transformation that aligns points in one view of an object with corresponding points in another view of that object or another object. Using this definition, the chapter treats restoration as it is applied to images of anatomy that have been acquired by medical imaging modalities, especially the tomographic modalities, such as CT, MR, and PET. Because the body moves in three dimensions, the emphasis is on three dimensional

restoration problems. Commonly used classes of geometrical transformations are presented with an emphasis on rigid and scaled transformations. Methods of restoration are divided into point-based, surface-based, and intensitybased; well-established algorithms are described for all three categories, and both theoretical and practical discussions of their applications are provided. The emphasis in this chapter is on rigid restoration because, as of this writing, most of the work and most of the progress in restoration has been made in this area.

[9]. Anish Kumar "Medha V. Wyawahare, Dr. Pradeep M. Patil, and Hemant K. Abhyankar""**Image Enhancement Restoration Techniques: An overview**" "**Vol. 2, No.3, September 2009**" says that Image restoration is a vital problem in medical imaging. It has many potential applications in clinical diagnosis (Diagnosis of cardiac, retinal, pelvic, renal, abdomen, liver, tissue etc disorders). It is a process of aligning two images into a common coordinate system thus aligning them in order to monitor subtle changes between the two. Restoration algorithms compute transformations to set correspondence between the two images the purpose of this paper is to provide a comprehensive review of the existing literature available on Image restoration methods. We believe that it will be a useful document for researchers longing to implement alternative Image restoration methods for specific applications.

[10]. P.K. Biswas "Manjusha Deshmukh,Udhav Bhosle""**A SURVEY OF IMAGE RESTORATION and ENHANCEMENTS** ""**International Journal of Image Processing (IJIP), Volume (5) : Issue (3) , 2011**" says that various methods are reported in literature to register images which are in same band. In pixel based method cross correlation is used as similarity measure. It is observed that in natural images like buildings or scenery, correlation method shows match at multiple points. The feature based method makes use of features like point of intersection, edges, corners, centers of contours etc. for matching sample template with reference image. But this method is manual and hence time consuming. The method combining image features with correlation method have many advantageous properties of both feature-based and intensity based. It overcomes the limitation of intensity based method. Contour based methods do not use the gray values for matching and hence overcomes the limitations of spatial methods. Feature based method filter out the redundant information. Accuracy of this method is more but the limitation is, it is manual and slow. In frequency based method accuracy is more than correlation method but less as compared to other methods. But if we extract image features and then

apply Fourier method accuracy increases. In frequency domain it should be noted that some form of interpolation must be used.

[11]. **Charu Khare "Bruce D. Lucas Takeo Kanade""An Iterative Image Restoration Technique with an Application to Stereo Vision""Vol 5 2008"** says that the system that we have implemented at present requires considerable hand-guidance. The following are the issues we intend to investigate toward the goal of automating the process.

- **Providing initial depth estimates for objects:** one should be able to use approximate depths obtained from low-resolution images to provide initial depth estimates for nearby objects visible only at higher resolutions.
- **Constructing a depth map:** one could build a depth map from depth measurements by some interpolation method.
- **Selecting points of interest:** the various techniques
- **Tracking sudden depth changes:** the sudden depth changes found at the edges of objects require some set of higher-level heuristics to keep the matching algorithm on track at object boundaries.
- **Compensating** for the different appearances of objects in the two views: the general form of the matching algorithm that allows for arbitrary linear transformations should be useful here.

VII. CONCLUSION

Image enhancement offer a wide assortment of methodologies for adjusting pictures to attain to outwardly adequate pictures. The decision of such procedures is a component of the particular undertaking, picture content, eyewitness qualities, and review conditions. In this study, we concentrate on overview the current systems of picture improvement. The future degree will be the advancement of versatile calculations for viable picture upgrade utilizing Genetic Algorithm and Neural Network.

REFERENCES

1. S.S. Bedi1, Rati Khandelwal," Various Image Enhancement Techniques- A Critical Review" International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 3, March 2013
2. Kanika Gupta, S.K. Gupta, "Image Denoising Techniques- A Review paper", Volume-2, Issue-4, March 2013.
3. Prof.Gayathri.R, Dr. Sabeenian.R.S , "Modern Techniques in Image Denoising: A Review" , Vol. 2,Issue 4, April 2013.
4. Deepak K. Pandey, Prof. Rajesh Nema , "Selective Review on Various Images EnhancementTechniques", Vol. 2, Issue 6, June 2013
5. M. Vijay, L. Saranya Devi, M. Shankaravadivu, M. Santhanamari, "Image Denoising Based on Adative Spatial and Wavelet Thresholding Methods," ICAESM, pp. 161-166, March 2012.
6. P.Arumugam "Advanced Web Usage Mining Algorithm using Neural Network and Principal Component Analysis" International Journal of Computer Science & Communication Networks,Vol 3,issue3
7. Amandeep Singh1, Manjeet Singh2, Mandeep Kaur3," Study of Various Image Enhancement Techniques-A Review" IJCSMC, Vol. 2, Issue. 8, August 2013, pg.186 – 191.
8. T.peynot,"J. Michael Fitzpatrick,Derek et al "Image Restoration""Vol 4 2007"
9. Anish Kumar "Medha V. Wyawahare, Dr. Pradeep M. Patil, and Hemant K. Abhyankar""Image Restoration Techniques: An overview" "Vol. 2, No.3, September 2009"
10. P.K. Biswas Manjusha Deshmukh et.al SURVEY OF IMAGE RESTORATION AND ENHANCEMENT ""International Journal of Image Processing (IJIP), Volume (5) : Issue (3) , 2011"
11. Charu Khare "Bruce D. Lucas Takeo Kanade""An Iterative Image Restoration Technique with an Application to Stereo Vision""Vol 5 2008"