

PERFORMANCE ANALYSIS OF PEGASIS PROTOCOL WITH GENETIC APPROACH IN WSN

Narottam Saini¹, Amanpal Singh Rayat²

¹Research Scholar

Rayat Institute of Engineering & IT

²Assistant Professor

Rayat Institute of Engineering & IT

saini.narottam@gmail.com, amanpalrayat@gmail.com

Abstract: Wireless sensor network is turning into a dynamically imperative and testing exploration territory. Headway in WSN empowers an extensive variety of natural observing and item following framework. Remote sensor systems comprise of little minimal effort sensor hubs, having a restricted transmission reach and their preparing, stockpiling abilities and vitality assets are constrained. We consider vitality compelled remote sensor system conveyed over a district. The fundamental assignment of such a system is to assemble data from hub and transmit it to base station for further handling. For the most part, it needs a settled measure of vitality to get one bit of data and an extra measure of vitality to transmit the same. This extra sum relies on upon the transmission range. Along these lines, if all hubs transmit specifically to the BS, then they will rapidly exhaust their vitality. To perform directing in remote sensor system with this constraint of low power, vitality and capacity capacities is a real issue. Numerous arrangements has been proposed where vitality mindfulness is key thought for steering. The LEACH, PEGASIS, GROUP, Ant province advancement and so forth has given exquisite arrangements and has indicated extremely compelling results. In this paper, we have proposed to implement ethical PEGASIS protocol in the network which shows an alternative path using optimization techniques in case of any failure in the network by using genetic algorithm.

Keywords: Pegasis, Genetic Algorithm, Wireless Sensor Networks.

I. INTRODUCTION

Late advances in detecting, processing and correspondence innovations coupled with the need to persistently screen physical phenomena have prompted the advancement of Wireless Sensor Networks (WSNs). WSN comprise of four principle segments [1]: A radio, a processor, sensors and battery. A WSN is shaped by thickly sent sensor hubs in an application zone. In many organizations, the sensor hubs have self-sorting out capacities, to shape a proper structure to collectively perform a specific undertaking. Remote Sensor Networks (WSNs) is a class of remote impromptu systems in which sensor hubs gather, prepare, and impart information obtained from the physical environment to an outer Base Station (BS). The key requirements in the improvement of WSNs are restricted battery force, cost, memory limit, constrained computational capacity, and the physical size of the sensor hubs. Because of the extreme vitality limitations of expansive number of thickly conveyed sensor hubs, it obliges a suite of system conventions to actualize

different system control and administration capacities, for example, synchronization, hub confinement, and system security. Remote Sensor Networks are discovered suitable for applications, for example, reconnaissance, accuracy horticulture, savvy homes, computerization, vehicular activity administration, natural surroundings checking, and debacle identification. Directing in remote sensor systems contrasts from routine steering in altered systems in different courses: There is no base, remote connections are questionable, sensor hubs may fizz, and directing conventions need to meet strict vitality sparing prerequisites.

The customary directing conventions have a few inadequacies when connected to WSNs, which are for the most part because of the vitality compelled nature of such systems. In this paper, we endeavor to overcome restrictions of the remote sensor systems, for example, constrained vitality assets, changing vitality utilization in light of area, high cost of transmission, and restricted transforming abilities which frames the fundamental

downsides while sending or accepting information bundles amid directing [2].

In this paper, we have proposed PEGSIS protocol for advancement of Wireless Sensor Networks by using genetic algorithm. Genetic algorithm is a hunt heuristic that emulates the procedure of common determination. This heuristic is routinely used to create valuable answers for improvement and inquiry issues [3]. A genetic algorithm fits in with the bigger class of developmental calculations, which produce answers for improvement issues utilizing by regular advancement, for example, legacy, transformation, hybrid and choice [4].

The rest of the paper is organized as follows: section 2 includes Literature Survey, section 3 gives the overview of the PEGASIS, section 4 contains the proposed Routing Algorithm using GA, and Section5 shows the results and enhancement, finally section 6 contains the conclusion and Future work part.

2. PEGASIS

A PEGASIS being chain based various leveled convention transmits the information by selecting pioneer hubs. The pioneers speak with the Base Station. This methodology is vitality proficient as well as disseminates vitality stack equally. The pioneer hub continues pivoting arbitrarily as the information transmission adjusts, the rounds specifically chain development, pioneer choice and information transmission, proceed. Beginning from an irregular hub, the hubs will be composed to frame a chain, which can be achieved by the sensor hubs themselves utilizing an insatiable calculation. On the other hand, the BS can figure this tie and show it to all the sensor hubs [19].

3. SIMULATION MODEL

Edified by traditional methods, proposed method has been based on PEGASIS protocol for optimization of parameters.

3.1 Methodology

Step 1 - Implement the WSN system. The system, that comprises of numerous little sensor hubs with detecting, control, information transforming, interchanges, and systems administration abilities.

Step 2 - Failed hubs may diminish the nature of administration (Qos) of the whole WSN. The hub status in WSNs can be separated into two sorts: ordinary and defective. Defective thusly can be "lasting" or "static". The alleged "changeless" means fizzled hubs will stay flawed until they are supplanted, and the purported "static" means new blames won't create amid issue location. In, hub shortcomings of WSNs can be

separated into two classes: hard and delicate. The supposed "hard blame" is the point at which a sensor hub can't speak with different hubs due to the disappointment of a certain module (e.g., correspondence disappointment because of the disappointment of the correspondence module, vitality consumption of hub, being out of the correspondence scope of whole portable system as a result of the hubs' moving et cetera). The supposed "delicate flaw" implies the fizzled hubs can keep on meeting expectations and correspond with different hubs (equipment and programming of correspondence module are typical), yet the information detected or transmitted is not right.

Step 3 - Apply GA for enhancement process. GA will act as takes after [20]:

- Initialize GA parameters i.e., populace size, determination, transformation and hybrid.
- Create wellness capacity. (Changed wellness capacity) Where F_s = highlight, F_t = total number of highlight, e = classification slip rate (enhancement parameter).
- Call GA capacity with the wellness capacity.
- If the yield is 1 then the highlight is chosen else ignored.
- Write the diminished highlights to excel file.

3.2 Flowchart

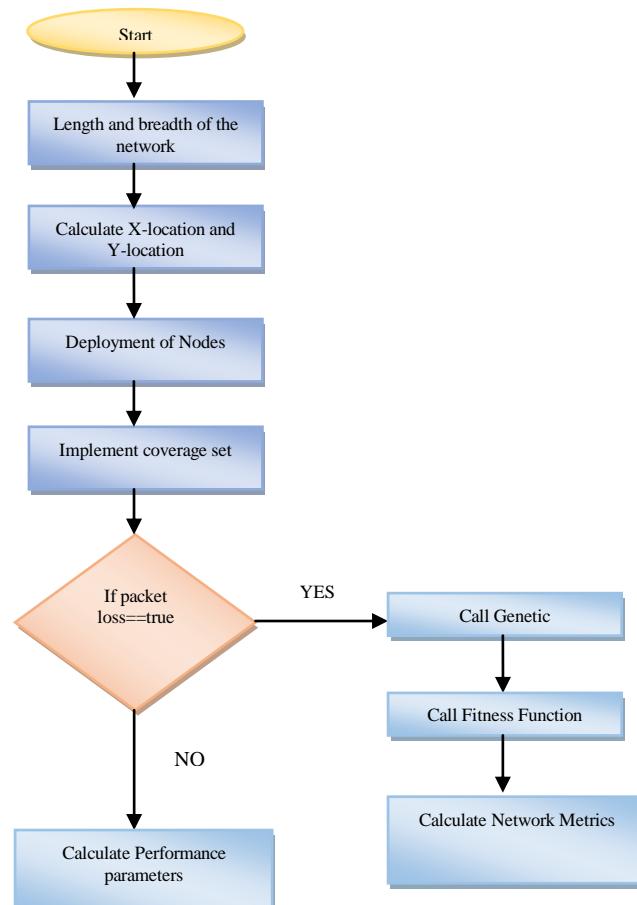


Figure 1. Proposed Flowchart

4. RESULTS AND IMPLEMENTATION

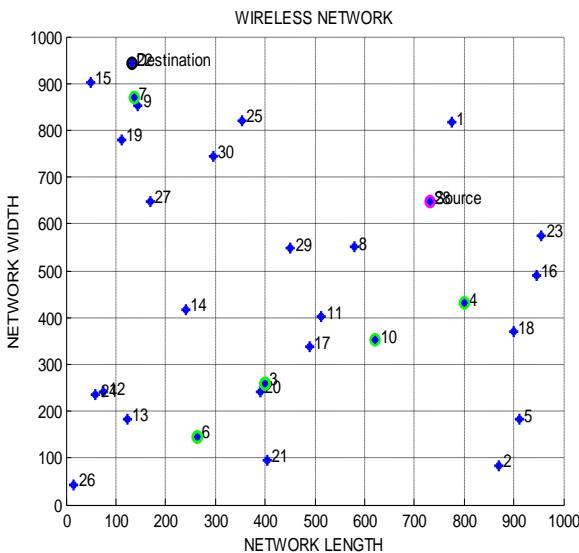


Figure 2. Wireless Sensor Network

The above figure shows the WSN network with sensor deployment. Also the source and destination is plotted in the network with magenta color (source) and black (destination). The nodes are deployed in the network area which is considered as 1000*1000 in meters. The nodes in the green are plotted as route nodes through which the packets will be transferred.

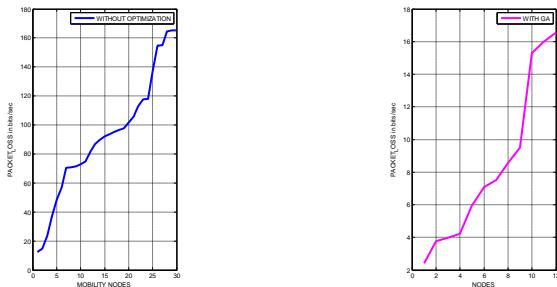


Figure 3. Packet Loss

The above figure shows the packet loss in the network in bits/sec which shows that the packet loss is in the higher amount which needs optimization and it will be optimized using genetic approach which decreases the packet loss amount and shows the comparison between without optimization and genetic approach.

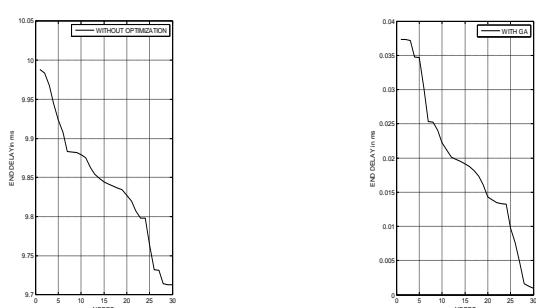


Figure 4. Comparison of End delay

The above figure shows the comparison of end to end delay to deliver the packets in short span of time and shows that the end to end delay is very less after applying genetic algorithm and is very high without optimization. This measure should be low to increase the network lifetime

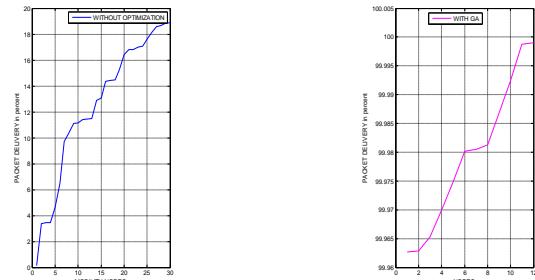


Figure 5. Packet delivery rate

The above figure shows the packet delivery rate in PEGASIS which shows that if we don't apply any optimization procedure the packet delivery is very less and shows that it is only 16 % and if we apply genetic approach it shows that it is having high packet delivery which increases the performance of the protocol.

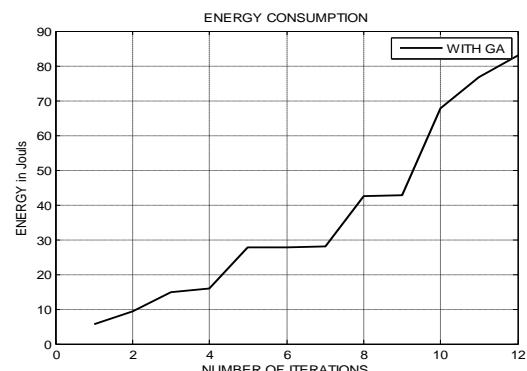


Figure 6. Energy Consumption

The above figure shows the energy consumption of the network which shows that the energy consumption is 92 Joules after applying Genetic algorithm.

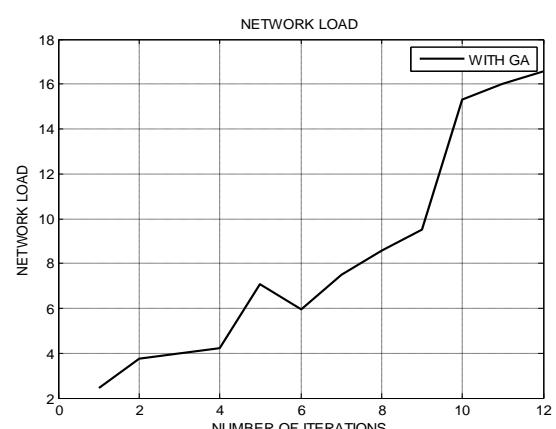


Figure 7. Network Load

The above figure shows the Network load after optimization approach and shows that the network is having fewer loads to increase the network lifetime. The genetic approach provides the better performance of the protocol for the better efficiency of the network.

5. CONCLUSION AND FUTURE SCOPE

Remote sensor system is cooperation of sensor hubs that have conveying and handling capacities. These hubs have self-arranging abilities. The essential undertaking of sensor systems is to sense the occasions, gather information and send it to their asked for destination. In this paper, we have enhanced the proficiency of WSN based, hierachal directing convention, PEGASIS by executing an enhancement strategy, GA, which utilizes manmade brainpower. Arrangements of parameters have been enhanced utilizing GA and higher system lifetime has been attained to than with PEGASIS just.

For future degree, more than one advancement systems can be actualized to further enhance the convention. More number of parameters can be centered than utilized as a part of this paper. Future examines can even pick more refined manmade brainpower approaches for system enhancement. Future work this GA can be half breed with existing calculation, it may perform better than the current.

REFERENCES

- [1] Stephanie Lindsey and Cauligi S. Raghavendra, PEGASIS: Power-Efficient Gathering in Sensor Information Systems, IEEE, 3-1125 - 3-1130 vol.3, 2002.
- [2] DervisKaraboga · BahriyeBasturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Springer Science+Business Media B.V. 2007.
- [3] Jennifer Yick, Biswanath Mukherjee, DipakGhosal, Wireless sensor network survey, Department of Computer Science, University of California, Davis, CA 95616, United States, 2008 Elsevier.
- [4] DervisKaraboga · BahriyeAkay, A survey: algorithms simulating bee swarm intelligence, Springer Science+Business Media B.V. 2009, DOI 10.1007/s10462-009-9127-4
- [5] Meenakshi Diwakar and Sushil Kumar "An Energy Efficient Level Based Clustering Routing Protocol for Wireless Sensor Networks" International Journal of Advanced Smart Sensor Network Systems (IJASSN), Vol.2, Issue.2, pp.45-67, April 2012.
- [6] SelcukOkdem and DervisKaraboga: Routing in Wireless Sensor Networks Using an Ant Colony Optimization (ACO) Router Chip: InSensors2009.
- [7] Shio Kumar Singh, M P Singh, and D K Singh: Energy Efficient Homogenous Clustering Algorithm for Wireless Sensor Networks: International Journal of Wireless & Mobile Networks (IJWMN), Vol.2, No.3, August 2010.
- [8] Y. Zhang, L. D. Kuhn, and M. P. J. Fromherz, "Improvements on Ant Routing for Sensor Networks," *M. Dorigo et al. (Eds.): ANTS 2004, Springer-Verlag Berlin Heidelberg 2004*, vol. LNCS 3172, pp. 154-165, 2004.
- [9] Tiago Camilo, Carlos Carreto, Jorge Sá Silva, Fernando Boavida: An Energy-Efficient Ant-Based Routing Algorithm for Wireless Sensor Networks.
- [10] Rabiner, W.; Kulik, J.; Balakrishnan, H. Adaptive Protocols for Information Dissemination in Wireless Sensor Networks. In *Proceedings of the Fifth Annual International Conference on Mobile Computing and Networking (Mobicom)*, Seattle, WA, USA, August, 1999; pp. 174-185.
- [11] Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An Application-Specific Protocol Architecture for WirelessMicrosensor Networks. *IEEE Trans. Wirel. Commun.* 2002, 1, 660-670.
- [12] Lindsey, S.; Raghavendra, C.S. PEGASIS: Power-Efficient Gathering in Sensor Information Systems. In *Proceedings of the Aerospace Conference*, Big Sky, MT, March, 2002; pp. 1125-1130.
- [13] AyonChakraborty,SwarupkumarMitra,MrinalKantiNi skar:A Genetic Algorithm Inspired routingProtocol for Wirelesssensor Network: in International Journal of Computational IntelligenceTheory and practice,Vol 6No.1 June 2011
- [14] C. Intanagonwiwat, R. Govindan, and D. Estrin,"Directed diffusion: a scalable and robust communication paradigm for sensor networks," Proceedings of ACM MobiCom '00, Boston, MA, 2000, pp. 56-67.
- [15] D. Braginsky and D. Estrin, "Rumor Routing Algorithm for Sensor Networks," in the Proceedings of the First Workshop on Sensor Networks and Applications (WSNA), Atlanta, GA, October 2002.
- [16] F. Ye, A. Chen, S. Liu, L. Zhang, "A scalable solution to minimum cost forwarding in large sensor networks", Proceedings of the tenth International Conference on Computer Communications and Networks (ICCCN), pp. 304-309, 2001.
- [17] N. Sadagopan et al., The ACQUIRE mechanism for efficient querying in sensor networks, in the Proceedings of the First International Workshop on Sensor Network Protocol and Applications, Anchorage, Alaska, May 2003.
- [18] V. Rodoplu and T. H. Meng, "Minimum Energy Mobile Wireless Networks", IEEE Journal Selected Areas in Communications, vol. 17, no. 8, Aug. 1999, pp. 133344.
- [19] Shurman,M.M.; Al-Mistarihi, M.F. ; Mohammad, A.N. ; Darabkh, K.A. and Ababnah, A.A., "Hierarchical clustering using genetic algorithm in wireless sensor networks", Published in : Information & Communication Technology Electronics & Microelectronics (MIPRO), 2013 36th International Convention,Print ISBN: 978-953-233-076-2,May 2013.
- [20] Gao Yang,Zhuang Yi , Ni Tianquan, Yin Keke and XueTongtong,"An improved genetic algorithm for wireless sensor networks localization" Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010 IEEE Fifth International Conference, Sept. 2010.
- [21] Richa Mehta and O.S. Khanna, Reducing Chain Complexity using Honey Bee Optimization in Wireless sensor network, International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013.