Neha Jund, International Journal of Advanced Trends in Computer Applications (IJATCA)
Volume 3, Number 2, February - 2016, pp. 69-71
ISSN: 2395-3519

CIATCAN International Journal of Advanced Trends in
i ATCA 4, licati
v & M Computer__App Ications
Yaaor www.ljatca.com
= SNz

Bug fixing technigque using Naive Bayes Classifier

'Neha Jund, *Dr.Shaily Jain
Department of Computer Science and Engineering
Chitkara University, Himachal Pradesh, India

Abstract: Bug fixes are interesting, since they not only provide the source code of a bug. It also provides source
code for how the bug is fixed. BugMem is popular tool to find duplicated bugs using bug fix memories: a project-
specific bug and fix knowledge base developed by analysing the history of bug fixes. The change history of a
software project contains a rich collection of code changes that record previous development experience. In the
repository that records a software project’s change history, there are various changes where developers fix bugs
(known as bug fix changes) as opposed to adding new features or re-factoring source code. Changes that fix bugs
are notably interesting, since they record both the old buggy code and the new fixed code. This paper presents an
approach for extracting bugs fix patterns using BugMem tool and then automatically fixing the most recurrent
bugs fixes using Naive Bayes classifier. Naive Bayes classifier is the best known classifier for text mining as it
does not use iterative steps and hence is fast and less time consuming. Naive Bayes classifier is simple to
understand and implement yet powerful. Automatically fixing the recurrent bugs will save a lot of time in
debugging the software and also will save time which is put to fix the same type of bugs again which are already
fixed in previous versions. Afterwards the performance of approach is checked by using ROC (receiver
optimization curve) considering the false positives and true positives and also Area, Confident interval, Standard
deviation.

Keywords: Bug, Fix, Open source software, Bug finding tool, Prediction, Patterns.

I. INTRODUCTION

The presence of bugs is a persistent quality of human
created software. This is not intentional. From the dawn
of software engineering and the coining of the software
crisis, the creation of bug-free software has been a goal
for engineer and researcher alike. One useful starting
point and whether the frequency of bug kinds is similar
across multiple systems. Once this information is
known, it is possible to grade the kinds of bugs from
most to least common, and then focus research attention
on diminishing the most common types of bug.

Source code repositories hold a wealth of information
that is not only useful for managing and building source
code, but also as a detailed log of how the source code
has evolved during development. If a piece of the source
code is re-factored, evidence of this will be in the
repository. The code describing how to use the software
pre and post re-factoring will exist in the repository. As
bugs are fixed, the changes made to correct the problem
are recorded. The challenge, then, is to develop tools
and techniques to automatically extract and use this
information.

It is easy for programmers to think about types of bugs
that might occur, and then devise a tool to look for these
bugs. However, the space of possible tools to build is
large. Instead of creating solutions and looking for bugs
.Program maintenance and repair is one of the most time
consuming and common jobs for software projects.
Finding and repairing bugs in software is essential for
the software to be stable, and correcting the bugs
usually requires only small changes to the code base.
However, finding the bugs and seeing the correct
solution is not always an obvious or easy task, even for
the most insignificant of software bugs.

Il. Problem formulation

Existing work:

In existing work the change history of 717 open source
projects is mined to extract bug-fix patterns. Manual
inspection of the bugs found is done to get insights into
the contexts and reasons behind those bugs. Results
show that missing null checks and missing initializations
are very recurrent and they believe that they can be
automatically detected and fixed.

Www.ijatca.com 69

Neha Jund, International Journal of Advanced Trends in Computer Applications (IJATCA)

Proposed work:

The existing approach was improved one and as well as
tested over large no of source codes, but nevertheless for
making the system more automated we need to replace
the human analysis phase with some machine learning
technique so that when the such type of bug occurs next
time they get fixed automatically. Therefore in proposed
algorithm we will develop a framework for
automatically fixing recurrent bugs using Naive Bayes
classifier.

I11.Objective

Collection of data to extract recurring bugs.

To study different types of bugs for finding recurrent
bug fix patterns.

To apply normalization, stemming and labeling on
bug fixes.

To create train set for training system and test set for
testing system

IVV. Techniques and Work plan

Phase-I

Theoretical Activity

o Reviewing existing approaches and applications using
Naive Bayes classifier.

o Reviewing the various Bug fixing tools available and
selecting the best one for proposed approach

Phase-11

Design and Testing

e Collection of data to analyze bugs.

e To analyze data and finding recurrent bug fix
patterns.

e To create train set for training system and test set for
testing system.

e To apply Naive Byes classifier and performance
evaluation using ROC curve (receiver operating
characteristic).

V. Related Work

Mircea Lungu et al. [1] mine the change history of 717
open source projects to extract bug-fix patterns and also
manually inspect many of the bugs found to get insights
into the contexts and reasons behind those bugs.
Missing null checks and missing initializations are very
recurrent. They can be automatically detected and fixed.

Kim et al. [2] created a tool named BugMem that
extracts bug fix rules from the history of a project and
applies bug detection. This approach is smart and
innovative but the rules are not “patterned” and they are
instead saved in a concrete form. This leads to the saved

Volume 3, Number 2, February - 2016, pp. 69-71

ISSN: 2395-3519

fix rules being applicable only to code clones within the

same project. Code clone tracking tools would perform

definitely better by following the changes of a clone and
applying it on all other clones.

Anvik et al. [5] presented a semi-automated approach to
assign issue reports to developers. A machine-learning
algorithm is utilized on bug reports to learn the kinds of
reports each developer resolves.

Chen et al. [8] created a tool (CVS Search) that
searches for fragments of source code by using CVS
comments. CVS Search allows one to better search the
most recent version of the code by looking at previous
versions to better understand the current version.

Ostrand et al. [10] describe a tool that automatically
looks at the characteristics of a software project and,
utilizing historical data, anticipates which files are likely
to contain a larger number of faults.

Graves et al. [11] use change histories to understand
how code ages. Code is to be aged if its structure makes
it unnecessarily difficult to understand or maintain. Data
based on change history is more useful in predicting
fault rates than metrics supported on the code, such as
size.

Antoniolet al. [13] describes the different types of
classifier and discussed the drawback the Naive Bayes
classifier in detail. A feature selection technique
applicable to classification-based bug prediction is
proposed. Technique is applied to predict bugs in
software changes, and execution of Naive Bayes and
Support Vector Machine (SVM) classifiers s
characterized The Naive Bayes classifier greatly
simplify learning by assuming that features are
independent given class.

R. Koschke et al. [11] demonstrate a modal for
understand the data characteristics which affect the
performance of naive Bayes. Their approach uses
Monte Carlo simulations that allow a systematic study
of classification accuracy for several classes of
randomly generated problems. They analyze the impact
of the distribution entropy on the categorization error,
showing that low-entropy characteristic distributions
yield good performance of naive Bayes. They also
demonstrate that naive Bayes works well for certain
nearly functional feature dependencies, thus reaching its
best execution in two opposite cases: completely
independent features (as expected) and functionally
dependent features (which is startling). Another startling
result is that the accuracy of naive Bayes is not directly
correlated with the degree of feature dependencies

Www.ijatca.com 70

Neha Jund, International Journal of Advanced Trends in Computer Applications (IJATCA)

measured as the class conditional mutual information
between the features.

Conclusion
In this paper, we basically reviewed various bug fixing
techniques and architecture also discussed the benefits
of the research as well as their importance in
such buildings.

In future work, we will implement a robust and
improved bug fixing technique which will outperform all
the existing techniques.

References

[1] Osman, Haidar, Mircea Lungu, and Oscar Nierstrasz.
"Mining frequent bug-fix code changes." Software
Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week-IEEE
Conference on. IEEE, 2014.

[2] S.Kim, K. Pan and E. E. J Whitehead, Jr., "Memories of
bug fixes,” in Proceedings of 14th ACM SIGSOFT
International symposium on Foundations of software
engineering, SIGSOFT ' 06/FSE-14,(New York, NY USA).
[3]https://www.princeton.edu/~achaney/tmve/wikil00k/docs
/Naive_Bayes_classifier.html
[4]http://in.mathworks.com/help/stats/naivebayesclass.htm|?
nocookie=true

[5] Anvik, J., Hiew, L., and Murphy, G. C., "Who Should
Fix This Bug?" in Proceedings of 28th International
Conference on Software Engineering (ICSE'06), Shanghai,
China May 20-28 2006, pp. 361-370.

[6] http://scikit-learn.org/stable/modules/naive_bayes.html
[7]http://en.wikipedia.org/wiki/Naive_Bayes_classifier#Trai
ning.

[8] Daniel M. German" Mining CVS repositories, the
softChange experience" Proceedings of the International
Workshop on Software Clones (IWSC). 2009.

[9] http://www.statsoft.com/textbook/naive-bayes-classifier
[10] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Where the
Bugs Are,” Proc. 2004 ACM SIGSOFT Int’l Symp.
Software Testing and Analysis (ISSTA ’04), July 2004.

[11] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy,
“Predicting Fault Incidence Using Software Change
History,” IEEE Trans. Software Eng., vol. 26, no. 7, pp.
653-661, July 2000.

[12] http://en.wikipedia.org/wiki/Naive_Bayes_classifier.
[13] Mockus, A., Fielding, T., and Herbsleb, D., “Two Case
Studies of Open Source Software Development: Apache and
Mozilla", ACM Transactions on Software Engineering and
Methodology vol. 11, no. 3, July 2002, pp. 309-346.
[14]http://www.thearling.com/text/dmtechniques/dmtechniq
ues.htm.

[15] http://en.wikipedia.org/wiki/GitHub.

[16] https://github.com/git/git.

Www.ijatca.com

Volume 3, Number 2, February - 2016, pp. 69-71
ISSN: 2395-3519

71

