
Neha Jund, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 3, Number 2, February - 2016, pp. 69-71

ISSN: 2395-3519

www.ijatca.com 69

International Journal of Advanced Trends in

Computer Applications
www.ijatca.com

Bug fixing technique using Naive Bayes Classifier
1
Neha Jund,

2
Dr.Shaily Jain

Department of Computer Science and Engineering

Chitkara University, Himachal Pradesh, India

Abstract: Bug fixes are interesting, since they not only provide the source code of a bug. It also provides source

code for how the bug is fixed. BugMem is popular tool to find duplicated bugs using bug fix memories: a project-

specific bug and fix knowledge base developed by analysing the history of bug fixes. The change history of a

software project contains a rich collection of code changes that record previous development experience. In the

repository that records a software project’s change history, there are various changes where developers fix bugs

(known as bug fix changes) as opposed to adding new features or re-factoring source code. Changes that fix bugs

are notably interesting, since they record both the old buggy code and the new fixed code. This paper presents an

approach for extracting bugs fix patterns using BugMem tool and then automatically fixing the most recurrent

bugs fixes using Naive Bayes classifier. Naive Bayes classifier is the best known classifier for text mining as it

does not use iterative steps and hence is fast and less time consuming. Naive Bayes classifier is simple to

understand and implement yet powerful. Automatically fixing the recurrent bugs will save a lot of time in

debugging the software and also will save time which is put to fix the same type of bugs again which are already

fixed in previous versions. Afterwards the performance of approach is checked by using ROC (receiver

optimization curve) considering the false positives and true positives and also Area, Confident interval, Standard

deviation.

Keywords: Bug, Fix, Open source software, Bug finding tool, Prediction, Patterns.

I. INTRODUCTION

The presence of bugs is a persistent quality of human

created software. This is not intentional. From the dawn

of software engineering and the coining of the software

crisis, the creation of bug-free software has been a goal

for engineer and researcher alike. One useful starting

point and whether the frequency of bug kinds is similar

across multiple systems. Once this information is

known, it is possible to grade the kinds of bugs from

most to least common, and then focus research attention

on diminishing the most common types of bug.

Source code repositories hold a wealth of information

that is not only useful for managing and building source

code, but also as a detailed log of how the source code

has evolved during development. If a piece of the source

code is re-factored, evidence of this will be in the

repository. The code describing how to use the software

pre and post re-factoring will exist in the repository. As

bugs are fixed, the changes made to correct the problem

are recorded. The challenge, then, is to develop tools

and techniques to automatically extract and use this

information.

It is easy for programmers to think about types of bugs

that might occur, and then devise a tool to look for these

bugs. However, the space of possible tools to build is

large. Instead of creating solutions and looking for bugs

.Program maintenance and repair is one of the most time

consuming and common jobs for software projects.

Finding and repairing bugs in software is essential for

the software to be stable, and correcting the bugs

usually requires only small changes to the code base.

However, finding the bugs and seeing the correct

solution is not always an obvious or easy task, even for

the most insignificant of software bugs.

II. Problem formulation

Existing work:

In existing work the change history of 717 open source

projects is mined to extract bug-fix patterns. Manual

inspection of the bugs found is done to get insights into

the contexts and reasons behind those bugs. Results

show that missing null checks and missing initializations

are very recurrent and they believe that they can be

automatically detected and fixed.

Neha Jund, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 3, Number 2, February - 2016, pp. 69-71

ISSN: 2395-3519

www.ijatca.com 70

Proposed work:

The existing approach was improved one and as well as

tested over large no of source codes, but nevertheless for

making the system more automated we need to replace

the human analysis phase with some machine learning

technique so that when the such type of bug occurs next

time they get fixed automatically. Therefore in proposed

algorithm we will develop a framework for

automatically fixing recurrent bugs using Naïve Bayes

classifier.

III. Objective

 Collection of data to extract recurring bugs.

 To study different types of bugs for finding recurrent

bug fix patterns.

 To apply normalization, stemming and labeling on

bug fixes.

 To create train set for training system and test set for

testing system

IV. Techniques and Work plan

Phase-I

Theoretical Activity

 Reviewing existing approaches and applications using

Naive Bayes classifier.

 Reviewing the various Bug fixing tools available and

selecting the best one for proposed approach

Phase-II

Design and Testing

 Collection of data to analyze bugs.

 To analyze data and finding recurrent bug fix

patterns.

 To create train set for training system and test set for

testing system.

 To apply Naïve Byes classifier and performance

evaluation using ROC curve (receiver operating

characteristic).

V. Related Work

Mircea Lungu et al. [1] mine the change history of 717

open source projects to extract bug-fix patterns and also

manually inspect many of the bugs found to get insights

into the contexts and reasons behind those bugs.

Missing null checks and missing initializations are very

recurrent. They can be automatically detected and fixed.

Kim et al. [2] created a tool named BugMem that

extracts bug fix rules from the history of a project and

applies bug detection. This approach is smart and

innovative but the rules are not “patterned” and they are

instead saved in a concrete form. This leads to the saved

fix rules being applicable only to code clones within the

same project. Code clone tracking tools would perform

definitely better by following the changes of a clone and

applying it on all other clones.

Anvik et al. [5] presented a semi-automated approach to

assign issue reports to developers. A machine-learning

algorithm is utilized on bug reports to learn the kinds of

reports each developer resolves.

Chen et al. [8] created a tool (CVS Search) that

searches for fragments of source code by using CVS

comments. CVS Search allows one to better search the

most recent version of the code by looking at previous

versions to better understand the current version.

Ostrand et al. [10] describe a tool that automatically

looks at the characteristics of a software project and,

utilizing historical data, anticipates which files are likely

to contain a larger number of faults.

Graves et al. [11] use change histories to understand

how code ages. Code is to be aged if its structure makes

it unnecessarily difficult to understand or maintain. Data

based on change history is more useful in predicting

fault rates than metrics supported on the code, such as

size.

Antoniolet al. [13] describes the different types of

classifier and discussed the drawback the Naïve Bayes

classifier in detail. A feature selection technique

applicable to classification-based bug prediction is

proposed. Technique is applied to predict bugs in

software changes, and execution of Naive Bayes and

Support Vector Machine (SVM) classifiers is

characterized The Naive Bayes classifier greatly

simplify learning by assuming that features are

independent given class.

R. Koschke et al. [11] demonstrate a modal for

understand the data characteristics which affect the

performance of naive Bayes. Their approach uses

Monte Carlo simulations that allow a systematic study

of classification accuracy for several classes of

randomly generated problems. They analyze the impact

of the distribution entropy on the categorization error,

showing that low-entropy characteristic distributions

yield good performance of naive Bayes. They also

demonstrate that naive Bayes works well for certain

nearly functional feature dependencies, thus reaching its

best execution in two opposite cases: completely

independent features (as expected) and functionally

dependent features (which is startling). Another startling

result is that the accuracy of naïve Bayes is not directly

correlated with the degree of feature dependencies

Neha Jund, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 3, Number 2, February - 2016, pp. 69-71

ISSN: 2395-3519

www.ijatca.com 71

measured as the class conditional mutual information

between the features.

Conclusion

In this paper, we basically reviewed various bug fixing

techniques and architecture also discussed the benefits

of the research as well as their importance in

such buildings.

In future work, we will implement a robust and

improved bug fixing technique which will outperform all

the existing techniques.

References
[1] Osman, Haidar, Mircea Lungu, and Oscar Nierstrasz.

"Mining frequent bug-fix code changes." Software

Maintenance, Reengineering and Reverse Engineering

(CSMR-WCRE), 2014 Software Evolution Week-IEEE

Conference on. IEEE, 2014.

[2] S.Kim, K. Pan and E. E. J Whitehead, Jr., ''Memories of

bug fixes,'' in Proceedings of 14th ACM SIGSOFT

International symposium on Foundations of software

engineering, SIGSOFT ' 06/FSE-14,(New York, NY USA).

[3]https://www.princeton.edu/~achaney/tmve/wiki100k/docs

/Naive_Bayes_classifier.html

[4]http://in.mathworks.com/help/stats/naivebayesclass.html?

nocookie=true

[5] Anvik, J., Hiew, L., and Murphy, G. C., "Who Should

Fix This Bug?" in Proceedings of 28th International

Conference on Software Engineering (ICSE'06), Shanghai,

China May 20-28 2006, pp. 361-370.

[6] http://scikit-learn.org/stable/modules/naive_bayes.html

[7]http://en.wikipedia.org/wiki/Naive_Bayes_classifier#Trai

ning.

[8] Daniel M. German" Mining CVS repositories, the

softChange experience" Proceedings of the International

Workshop on Software Clones (IWSC). 2009.

[9] http://www.statsoft.com/textbook/naive-bayes-classifier

[10] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Where the

Bugs Are,” Proc. 2004 ACM SIGSOFT Int’l Symp.

Software Testing and Analysis (ISSTA ’04), July 2004.

[11] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy,

“Predicting Fault Incidence Using Software Change

History,” IEEE Trans. Software Eng., vol. 26, no. 7, pp.

653-661, July 2000.

[12] http://en.wikipedia.org/wiki/Naive_Bayes_classifier.

[13] Mockus, A., Fielding, T., and Herbsleb, D., "Two Case

Studies of Open Source Software Development: Apache and

Mozilla", ACM Transactions on Software Engineering and

Methodology vol. 11, no. 3, July 2002, pp. 309-346.

[14]http://www.thearling.com/text/dmtechniques/dmtechniq

ues.htm.

[15] http://en.wikipedia.org/wiki/GitHub.

[16] https://github.com/git/git.

