

A Review over a VANET Architecture and its Application

¹Arun Sharma, ²DivyaJyoti, ³Bodh Raj, ⁴KapilKapoor
^{1,2,3,4}Department of Computer Science Engg.

Himachal Pradesh Technical University, Hamirpur

Abstract: In this paper we give the review about most challenging, emerging and hot research area vanet their challenges, routing protocol and their applications.

I. INTRODUCTION

VANET is a class of mobile ad hoc network. The distinctive options of VANETs area unit are chop-chop dynamical constellation, extremely mobile nodes, self-organizing. VANET primarily accommodates on board unit engineered within vehicle and road side unit. VANET is primarily developed for intelligent installation; it is classified into vehicle to vehicle communication and vehicle to road side unit communication. These networks architectures usually give 2 sorts of communications: V2V and I2V. V2V communications area unit are primarily utilized by safety applications whereas I2V communications area unit are usually utilized by traffic potency. The increased interest in conjointly has supported net communications to vehicles. Automobile makers are public authority area unit operating along with definition of communication standards within the conveyance surroundings. With the growing interest, conveyance networking has become a hot analysis topic within the previous couple of years, owing to its potential relevance to extend road safety and driving comfort [1]. All the employment of VANETs is being thought because of the base candidate technology for these cooperative systems that area unit expected to considerably cut back the amount of traffic accidents and improve the potency.

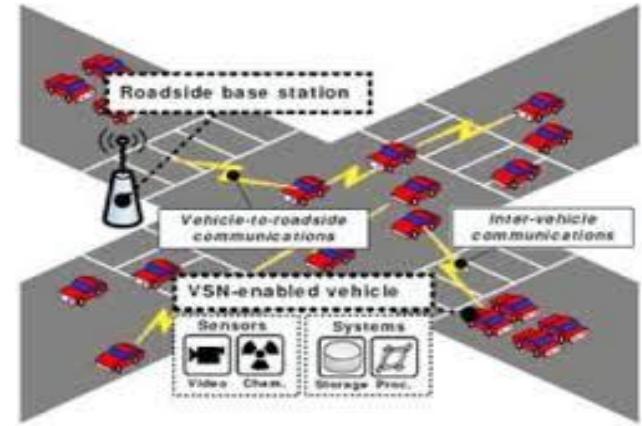


Figure: 1.1 VANET Networks

Types of possible VANET networks are shown in figure 1.1. Also, improved AODV routing protocol for end to end communication between vehicles routing protocols is employed to search out a route primarily based. One amongst the foremost vital routing protocols utilized in spontaneous networks is AODV. The property of this protocol is primarily based reactive protocol that searches routes only if they're required as a result of restricted information measure and topology often modified. It always exchanges management packets between neighbor nodes for routing. It reduces the packet delay in AODV and makes routes stable. All credit of this increased comfort and safety in VANETs goes to fast-paced nodes, frequent topology modified and slow convergence of routing protocol [2].

Degradation of Transmission home in VANETs caused by Interference is represented by the difficulties of entomb vehicle communication. Currently the main focus is on an analysis of the state of the art MAC protocol draft IEEE 802.11p and its limitations in high load things. Considering a selected safety state of affairs, an emergency vehicle is approaching a tie up. The reliable transmission may vary and may be reduced by up to ninetieth. Reason for this degradation is

interference which is caused by transmissions of different vehicles at different intervals [3]. Figure 1.2 shows how VANET networks works as mobile nodes for communication:

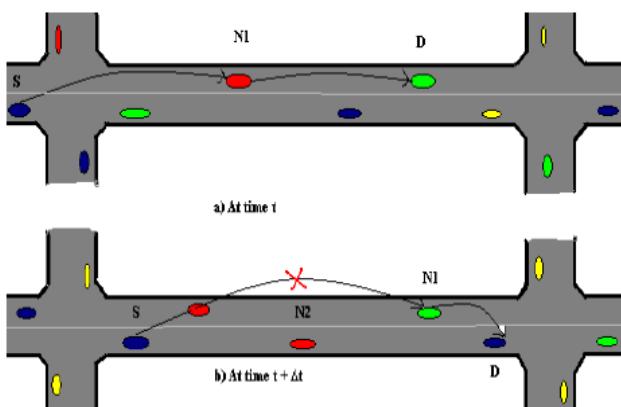


Figure: 1.2 Mobile VANET Networks

Vehicular Ad-hoc Networks or VANETs area unit is a specific sort of mobile networks where nodes area unit vehicles and no mounted infrastructure is required to manage association and routing among them. Vehicles, in an exceedingly pure VANET are area unit self-organized and self-configured due to "ad hoc" routing protocols that manage message exchange. These characteristics make this technology a decent resolution to make applications for safety functions or to avoid traffic jam. Devices within vehicles are designed to access net once an entrance is encountered. Road side Units are used for the Access purpose which may well be used as gateways in an exceedingly hybrid VANET to figure out intermediates between vehicles and different networks [5].

Vehicular Ad-hoc Network is a future technology, which is wide enough to be researched everywhere in the globe. It aims at revolutionize movement of awfully massive scale through the implementation of road safety and management architectures. The underlying thought is to convert each and every vehicle into a wireless human action entity, hence increasing driver's perception of horizon on the far side of varying human eye. The foremost targeted and supreme goal is to make safer pass by generating early warnings and timely response to the nodes. However, to extend the penetration, different categories of applications like control and provision of motion picture are being thought of. These goals need backend Infrastructure property to any or all nodes. The employment of infrastructure could vary from design to design and from service to service. Presently an outsized range of nation area units are performing on VANET architectures and their implementations, either on an individual basis or together with regional regulative authorities and automobile makers. But most of the event continues to be in analysis part with terribly

restricted sensible readying. Analysis standardization agencies, like Institute of Electrical and Electronic Engineering, International normal Organization and European telecommunication Standardization Institute have projected totally different VANET architectures [7]. Nodes in VANETs are connected by Road Side Units which transfers information to all the nodes in their respective ranges as shown in figure 1.3:

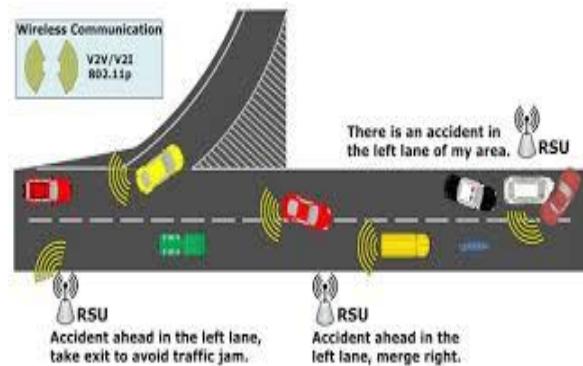


Figure: 1.3. Vehicular Roadside

Vehicle-to-Roadside or Vehicle-to-Infrastructure Communication can still grow. VANETs may be utilized for a broad variety of safety and non-safety applications, which gives worth additional services like vehicle safety, automatic toll payment, traffic management, increased navigation, location-based services like finding the nearest fuel station, edifice or travel lodge and motion picture applications like providing access to the web. Over previous couple of years, we have witnessed several analysis efforts that have investigated various problems associated with V2V, V2I and VRC areas [8]. Thanks to the crucial role they are expected to play in Intelligent Transportation Systems. In fact, varied VANET comes by varied governments, industries, and educational establishments around the world within the last decade about.

II. VANET Characteristics

Though, network share common characteristics with typical ad-hoc sensing element network like self-organized and lack of central management. VANET have distinctive challenges that have impact on the look of communication system and its protocol security.

These challenges include:

Probably high range of nodes

Regarding VANETs, the technical basis for visualized intelligent installation is a tendency to expect that an outsized portion of vehicles are equipped with communication capabilities for conveyance communication. Taking in addition potential road-side

units under consideration, VANET must be scalable with awfully high range of nodes.

High quality and frequent topology changes

Nodes probably move with high speed. Hence in bound eventualities like once vehicle pass one another, the length of your time that continues to be for exchange of info packets is quite little. Also, intermediate nodes in an exceedingly wireless multi-hop chain of forwarding nodes will move quickly.

High demand on application of information delivery

Important VANET applications area unit for traffic safety is used to avoid road accidents; probably as well as safety of life. These applications have high necessities with real time relevancy and reliability. An end-to-end delay of even seconds will render safety information mindless.

No confidentiality of safety information

For safety application, the information contained in an exceedingly message is of interest for all road users and thence not confidential.

Privacy

Communication capabilities in vehicles may reveal information regarding the driver/user, like symbol, speed, position and mobility pattern. Despite the necessity of message authentication and non-repudiation of safety messages, privacy of user's and driver's ought to be revered above all location privacy and obscurity.

III. VANET Architectural Design

Wireless networks have a characteristic to be infrastructure-less and don't rely on mounted infrastructure for communication and dissemination of data. The design of VANET consists of 3 categories: Pure cellular/WLAN, Pure sensing and hybrid. VANET Characteristics includes: VANET could use mounted cellular gateways and WLAN/WiMax access points at traffic intersections to attach to the web, gather traffic information or for routing functions. This specification is termed pure cellular or local area network. VANET will comprise of each cellular network and local area network to create a network [12]. In WLAN cellular networks, all the nodes gets information after coming in range of the specified WLAN tower as shown in figure 1.4 given below:

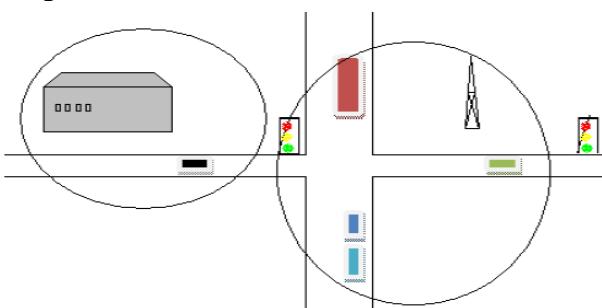


Figure: 1.4 WLAN Cellular Networks

Figure 1.5 and figure 1.6 shows pure ad hoc networks and hybrid network connectivity:

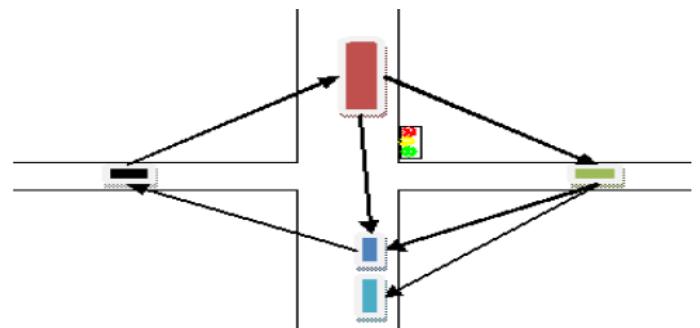


Figure: 1.5 Pure Ad hoc Network

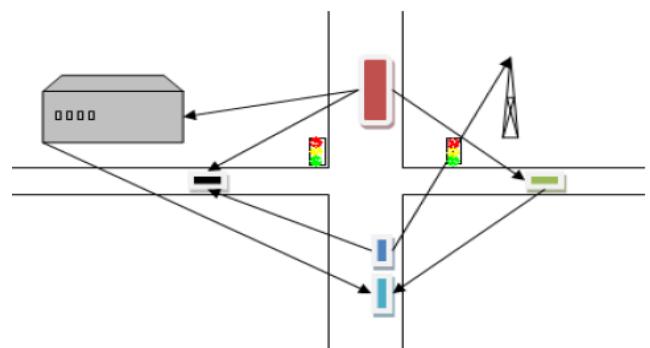


Figure: 1.6 Hybrid Network

The mounted gateways around the road sides conjointly provide property to vehicles. In such a state of affairs all vehicles and road side devices type are pure mobile sensing networks. Hybrid design consists of each infrastructure networks and sensing networks along. No centralized authority is needed in VANET as nodes will self-manage and self-organize the information in an exceedingly distributed fashion. Since the nodes are mobile type devices therefore information which have to be transmitted is a smaller amount which is reliable and sub optimum [16]. Possible design of VANET is shown in figure 1.7:

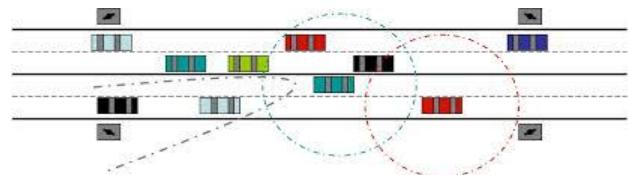


Figure: 1.7 VANET Design

IV. VANET APPLICATIONS

VANET application may be categorized into following classes:

VANET provides present property on the road to mobile users. It provides economical vehicle to vehicle communications that allows the Intelligent Transport System. ITS include style of applications like

cooperative traffic watching, management of traffic flows, blind crossing and collision interference.

Comfort application is the application which permits the traveler to speak with different vehicles and with net hosts that improves passenger's comfort. For instance, VANET provides internet property to conveyance nodes whereas with the movement in order, the traveler will transfer music, send emails, watch on-line movies etc [18].

V. Routing Protocols in VANET

The routing protocols of VANETs comprise 2 major classes: topology-based routing and position-based routing. There are several benefits and downsides of those routing protocols[36]. We have a tendency to explore the motivation behind their style and trace the evolution of those routing protocols and analyze potency with relevancy MANETs as there are area unit innumerable numbers of routing protocols developed in MANETs, however they are not doing well to VANETs that represent a very difficult category of MANETs. They are self-organized, distributed communication networks as represented before.

The elaborate coverage of relevant routing protocols and their impact on overall VANET design is incomplete without a discussion of VANET topics and applications[5]. Various sorts of VANET architectures may be shown higher than situations shown in the figure.

The area unit variety of MANET routing protocols and surveys are written on them, we'll thus solely prohibit our attention to MANET routing protocols utilized in the VANET context. The varied protocols utilized in the VANET context may be represented as follows:

Fisheye State Routing: This is an economical link state routing that maintains a topology map at every node and propagates link state updates with solely immediate neighbors; not the whole network. Moreover, the link state information is broadcasted in numerous frequencies for various entries reckoning on their hop distance to this node. Entries which are nearer to the area unit are broadcasted with larger frequency than the farther nodes. The inexactness in routing gets corrected by packets approach which is increasing nearer to the destination owing to the reduction in broadcast overhead[19].

EDHRP – Enhanced Direction based Hazard Routing Protocol: By adopting ZRP, it becomes able to transfer message into terrible zone with solely slightly increase in maintenance value, however its network organization is made same as clump. However, in its zone, center node does not have the responsibility to send messages through network with the maximum amount like head

node of clump protocols. During this projected protocol, the nodes are classified into three types: border node, center node and traditional node. By mistreatment of 3 sort's zone, projected protocol will reach radius of zone by 3-5 hops whereas maintenance value is same as ZRP with the radius which is barely a pair of hops. Our zone maintenance approach has shown that our protocol is way of economical balance than ZRP and clump protocols. In worst case of EDHRP, route searching method is same as ZRP with $R=2$ hops, however maintenance value is low as in ZRP. Also, every node depends on their own signal power, thus our protocol network zone is dynamic.

AODV – Ad hoc On Demand Distance Vector: During this routing, upon receipt of a broadcast question, nodes record the address of the node causing the question in their routing or the previous hop and is termed as backward learning. Upon inbound at the destination, a reply packet is then sent through the whole path obtained from backward learning to the supply. At every step of the trail, the node records its previous hop and establishes the forward path from the supply. This path is maintained for a longest possible time because the supply uses it. A link failure is also intimated recursively to the supply that successively triggers another query-response procedure to search out a brand new route [1]. Propagation of messages with AODV protocol is shown in figure 1.8 shown below:

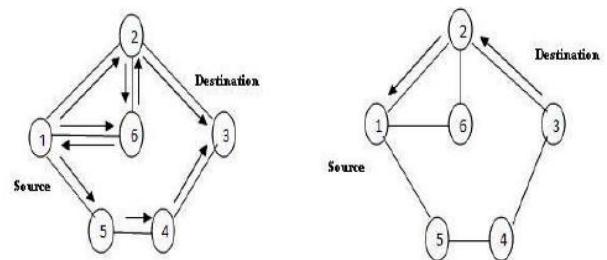


Figure: 1.8 Propagation in AODV

DSR – Dynamic supply Routing: This method uses supply routing, because the sequence of intermediate nodes on the routing path is maintained in an exceedingly information packet of the supply. In DSR, the IDs of the intermediate nodes which are traversed area unit are derived within the question packet. The destination then retrieves the whole path from the question packet, and uses it to retort to the supply. As a result, the supply establishes a path to the destination. If the destination is allowed to send multiple route replies, the supply node could receive and store multiple routes from the destination. If some links within the current route breaks then AN alternate route is employed. In exceedingly network with less quality, its one plus point over AODV is that it uses different route which can be

tried before the DSR initiates another flood for route discovery. The primary distinction between AODV and DSR is that in AODV information packets carry the destination address, whereas in DSR, information packets carry the complete routing information that shows that DSR has probably a lot of routing overheads than AODV. Moreover, because network diameter will increase, the number of overhead within the information packet continues to extend. The second distinction is that in AODV, route reply packets carry the destination address and also the sequence range, whereas in DSR, the route reply packets carry the address of every node on the route [25].

TORA – Temporally Ordered Routing algorithmic rule: This routing belongs to link reversal routing algorithms where the peak of tree unmoving at the supply can be employed to create directed acyclic graphs towards the destination that directs the flow of packets and ensures their reachability to any or all nodes. The node broadcasts the packet once it has a packet to send. Its neighbor then broadcasts the packet if it is the causing the DAG supported by node's downward link. A node constructs the directed graph by broadcasting a question packet. A node, upon receiving a reply packet, updates its height on condition that the peak from the reply packet offers the minimum of all the heights from reply packets it has received to this point. It then rebroadcasts the reply packet. The benefits of TORA area unit are the execution of the algorithmic rule which offers a route to any or all the nodes within the network and it reduces comprehensive management messages to a collection of neighboring nodes. However, since it provides a route to any or all the nodes within the network, maintenance of those routes could be a cumbersome task, particularly in extremely dynamic VANETs [27].

Broadcast Routing: Broadcast routing is often utilized in VANET for sharing, traffic, weather and emergency, road conditions among vehicles and delivering advertisements and announcements. Broadcasting can be employed once messages ought to be disseminated to vehicles on far side transmission which may vary once multi hops area units are used. A node broadcasts packet to any or all nodes within the network victimization flooding. This ensures the delivery of packets however an obstacle can create wasted information measures and nodes receives duplicates packets. In VANET, broadcasting performs higher for atiny even for low range of nodes. A number of the published routing protocols area unit are UMB, BROADCOMM, V-TRADE, and DV-CAST [28].

Conclusion:

In this paper we have successfully review the vanet architecture their application, advantages and disadvantages of routing protocol.

References

- [1] Abdalla GMT, Abu-Rgheff MA, Senouci SM (2010) Current Trends in Vehicular Ad Hoc Networks. *Ubiquitous Computing and Communication Journal* 6(9):1-9
- [2] Trullols O, Fiore M, Casetti C, Chiasserini C, Ordinas JB (2010) Planning roadside infrastructure for information dissemination in intelligent transportation systems. *Computer Communications* 33(4):432 – 442
- [3] Samara G, Al-Salihy WAH, Sures R (2010) Security Issues and Challenges of Vehicular Ad Hoc Networks (VANET). *Proceedings of the fourth International Conference on New Trends in Information Science and Service Science*, Malaysia, pp 393-398
- [4] kumar R, Dave M (2011) A Comparative Study of Various Routing protocols in VANET. *International Journal of Computer Science Issues* 8(4):643-648
- [5] Paul B, Ibrahim, Bikas AN (2011) VANET Routing Protocols: Pros and Cons. *International journal of Computer applications* 20(3):28-34
- [6] Aswathy MC, Tripti C (2012) A cluster based enhancement to AODV for inter-vehicular communication in VANET. *International Journal of Grid Computing and Applications* 3(3):41-50
- [7] Al-Sultan S, Al-Doorri MM, Al-Bayatti AH, Zedan H (2013) A comprehensive survey on vehicular Ad Hoc networks. *Journal of network and Computer Applications* 8(6):1-13
- [8] Patil VP (2012) Vanet Based Traffic Management System Development And Testing Using Aodv Routing Protocol. *International Journal of Computational Engineering Research* 2(5):1682-1689
- [9] Al-kahtani MS (2012) Survey on Security Attacks in Vehicular Ad Hoc Networks (VANETs). IEEE, 1-9
- [10] Qureshi KN, Abdullah AH (2013) Study of Efficient Topology Based Routing Protocols for Vehicular Ad-Hoc Network Topology. *World Applied Sciences journal* 23(5):656-663
- [11] Mathew ME, Kumar PAR (2013) Threat Analysis and Defence Mechanisms in VANET. *International Journal of Advanced Research in Computer Science and Software Engineering* 3(1):47-53
- [12] Berlin MA, Anand S (2014) Selective Road Hazard Message Dissemination Protocol for VANET. *Asian Journal of Scientific Reseach* 7(4):1-13
- [13] Shahid S, Din NU, Zafar H, Yahya K, Hasan L (2012) Performance evaluation of routing protocols in vehicular ad hoc networks. *Pakistan Journal of Science* 64(1):35-38
- [14] Chen Y, Sun Y, Ding N, Chung WK, Qian H, Xu G, Xu Y (2012) A Real-time Vehicle Safety System. *International Symposium on System integration* 16(18):957-962
- [15] Kumar V, Mishra S, Chand N (2013) Applications of VANETs: Present and Future. *Communications and network* 5(2):12-15
- [16] Gadkari MY, Sambre NB (2013) Traffic Management on Road using Density Aware Routing. *International Journal of Advanced Research in Computer Engineering and Technology* 2(4):1530-1533
- [17] Dixit A, Singh S, Gupta K (2015) Comparative Study of P-AODV and Improved AODV in VANET. *International*

Journal of Advance Research in Computer Science and management studies 3(1):270-275

[18] Ranjan P, Ahirwar KK (2011) Comparative Study of VANET and MANET Routing Protocols. Proceedings of the International Conference on Advanced Computing and Communication Technologies, Noida, pp 517-523

[19] Patil UP, Patil DD, Puri DD (2014) Reliable and Efficient Transmission systems by IPv6 Multicast in VANET. Proceedings of the International Conference on Modelling and simulation in Engineering and Technology, Jalgaon, pp 1-5

[20] Saad W, Han Z, Hjorungnes A, Niyato D, Hossain E (2011) Coalition Formation Games for Distributed Cooperation Among Roadside Units in Vehicular Networks. Selected Areas in Communications, IEEE Journal, pp 48-60.

[21] Abhale AB, Khandelwal SA, Nagraj U (2014) Motivation towards Cost Effective Roadside Communication Techniques Vehicular Cloud Environment. Proceedings of International Conference on Convergence of Technology, Alandi, pp 1-5

[22] Rasheed A, Zia H, Hashmi F, Hadi U, Naim W, Ajmal S (2013) Fleet and Convey Management Using VANET. Journal of Computer Networks 1(1):1-9

[23] Mejri MN, Ben-Othman J, Hamdi M (2014) Survey on VANET security challenges and possible cryptographic solutions. Vehicular Communications, pp 1-14

[24] Zeadally S, Hunt R, Chen YS, Irwin A, Hassan A (2010) Vehicular ad hoc networks (VANETS): status, results, and challenges. Springer Telecommunication Systems, pp 1-15

[25] Palomar E, Fuentes JMD, Gonzalez-Tablas AI, Alcaide A (2011) Hindering false event dissemination in VANETs with proof-of-work mechanisms. Transportation Research Part C, pp 1-13

[26] Kuklinski S, Wolny G (2011) CARAVAN: Context-AwaRe Architecture for VANET. Mobiclie Ad-Hoc Networks: Applications, pp 125-147

[27] Sehgal J, Arora P (2014) Delay Optimization in VANET Using Ant Colony Optimization and WI-MAX. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 3(8):11405-11412

[28] Fenu G, Nitti M (2011) Strategies to carry and Forward Packets in VANET. Springer-Verlag Berlin Heidelberg, pp 662-674

[29] Syal P, Kaur T (2014) Simulation of New AODV-FH Routing Protocol Based On AODV in VANET. International Journal of Engineering Trends and Technology 15(1):30-34

[30] Nagraj U, Deotale DG, Khandelwal SA (2014) Multicast and Unicast Communication in Vehicular Network Using IPv6. Journal of Computer Engineering 16(2):49-56