
Syed Mahamud Hossein, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 2, February -2017, pp. 14-19

ISSN: 2395-3519

www.ijatca.com 14

International Journal of Advanced Trends in

Computer Applications
www.ijatca.com

Multi step DNA Sequence Compression &

Encryption
*Syed Mahamud Hossein

1,2
, Pradeep Kumar Das Mohapatra

1
, Debashis De

2

1,2Research Scholar, Vidyasagar University ,Midnapur-721102
1Department of Microbiology, Vidyasagar University,Midnapur-721102, West Bengal

2Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology,

BF-142, Sector-I, Kolkata-700064,India.
1,2*

mahamud123@gmail.com,
1
pkdmvu@gmail.com,

2
dr.debashis.de@gmail.com

Abstract: The preponderance of short repeating patterns is an important phenomenon in biological sequences.

Here present Compression algorithm, which data compresses by searching exact repeat, genetic palindrome and

palindrome (RGP
2
) substring substitution and create a Library file. The output of RGP

2
 again compressed by

Huffman’s algorithm. It can provide the data security, by using ASCII code, on line Library file acting as a

signature and Huffman’s tree on at a particular level on the basic of a key tree node. Over all compression rate

is 2.263592 bit per base. The algorithm can approach a moderate compression rate, provide strong data security,

the running time is very few second and the complexity is O(n
2
).

.

Keywords: DNA Sequence, Huffman Code, Compression Rate, Node, Encode, Decode, Lossless Compression,

Repeat, Genetic Palindrome, Palindrome, Substitution and Encryption.

Abbreviation: RGP
2
 -Repeat, Genetic Palindrome and Palindrome.

I. INTRODUCTION

The DNA databases are too large [1-8], complex, must

contain some logical organization [9-10], hence data

structure to store, access and process this data

efficiently is a difficult & very challenging task [11-12].

So it needs an efficient compression algorithm to store

these huge mass of DNA data. The available

compression algorithm [13-14] cannot compress the

genome sequences well because the regularities in DNA

sequences are evasive [15]. The two bit encoding is

efficient if the bases are randomly distributed in the

sequence, but the life of living organism is non-random

have some limitations [15]. Huffman‘s code both in the

static and adaptive model are not applied on DNA

sequence well because they contain only four different

occurrence [11,15]. The phenomenal characteristics of

genomic data have contain so many repeats (e.g.

ATGC) within a given DNA sequence [11]. The DNA

sequence have some special structures [11,16-17],

researchers are kept in mind and develope several DNA

compression algorithms. This DNA sequence

Compression algorithm achieves a moderate

compression ratio and runs significantly faster than any

existing compression program on benchmark DNA

sequences. This algorithm consists of two phases: i)

find all exact RGP
2
 and ii) encode RGP

2
 and non-match

regions. This algorithm developed on the basis of fast

and sensitive homology search [18], as our exact RGP
2

search engine. This RGP
2
 substring creates a dynamic

library file and place ASCII character in appropriate

places on source file.

The RGP
2
 technique convert the DNA sequence into

256 ASCII characters with unmatch a,t,g and c, in that

situation the Huffman‘s algorithm is easily applied. Also

develop related other supporting algorithm are string

matching, string orientation changing and file size

calculating etc.

This technique can provide two phase information

securities. In phase one, the output contain 256

characters including a, t, g & c, so, the output file is

secure than input file. In phase two data encryption

purpose swapping of the branches in the Huffman‘s tree

on at a particular level on the basic of a key and decode

the encoded symbols using the modified Huffman‘s tree

which are specified in scheme I and II. In scheme-I

apply swapping method on two nodes at specified level

on Huffman‘s tree, and in scheme-II perform swapping

Syed Mahamud Hossein, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 2, February -2017, pp. 14-19

ISSN: 2395-3519

www.ijatca.com 15

method between two specified nodes at different level on

Huffman‘s tree [19-20].

Now discuss details of the algorithm, provide

experimental results and performance comparison of our

result with other exiting compression results [21-22].

In this paper, if not otherwise mentioned, consider lower

case letters u, v, to denote finite strings over the

alphabet {a, c, g, t}, |u| denotes the length of u, the

number of characters in u. ui is the i-th character of u.

ui:j is the substring of u from position i to position j. The

first character of u is u1. Thus u = u1:|u|−1, where ui:j

represent the original substring and |v| denotes the

length of v, the number of characters in v. vi is the i-th

character of v. vi:j is the another substring of v from

position i to position j. The first character of v is v1.

Thus v = v1:|v|−1. ui:j match with vi:j. The minimum

different between u-v is of substring length. The vi:j

represent the repeat, genetic palindrome and palindrome

substring .The match found if ui:j= vi:j and count exact

maximum repeat, genetic palindrome and genetic

palindrome of ui:j.. We use  to denote empty string and

=0.

The multi step algorithm as a two step procedure in

which first step consists of RGP
2
 Coding and result in

ASCII form. The second step consists of Huffman‘s

Algorithm which gives the final result.

The procedure for Multi step DNA Sequences

Compression & Encryption is

Define as - Let, s be source file to be coded.

Step 1: O1  RGP
2
 Coding(s)

Step 2: O2  Huffman Coding(O1)

II. METHODS

2.1: File format: File type is text file and blank space

ahead the end of file. The output file also text file,

contains the information of both unmatch four base pair

and coded values.

2.2: Generating the substring from input sequence

a t g g t a g t a a t gtacatg …… ...nn

It is clear that for i
th
 substring Wi .

i, is the starting position of the substring and.

j= (i-1) + l, is end position of the substring; where l is

the substring length.

The substring length is less than 3(three) has no

importance in matching context therefore we consider

the substring size in the range: 3 <=1 <= n.

Therefore range for I and j are as 1<=i<=n-1+1 and 1<=

j<=n respectively.

2.3: Searching for exact RGP
2

Let a string S over the DNA alphabet {a, c, g, t}. An

exact RGP
2
 is a substring, convert it into another string

s by edit operations (repeat, genetic palindrome and

palindrome, insertion). Now encode those substring

match apropos maximum that provide profits on overall

compression.

This method of compression is as below

1. Run the program and output all exact repeat, genetic

palindrome and palindrome into a list s in the order of

descending scores;

2. Extract match of repeat, genetic palindrome and

palindrome (r) with highest score from list s, then

replace all r by corresponding ASCII code into another

intermediate list o and place r in library file.

Where r is repeat, genetic palindrome &

palindrome.

3. Process each repeat, genetic palindrome and

palindrome in s so that there‘s no overlap with the

extracted repeat, genetic palindrome and palindrome r;

4. Goto step 2 if the highest score of repeat, genetic

palindrome and palindrome in s is still higher than a pre-

defined threshold; otherwise exit.

2.4 Encoding RGP
2

An exact RGP
2
 can be presented as two kinds of triples.

first is (l, p), where l means the repeat, genetic

palindrome and palindrome substring length and p show

the starting positions of the substrings of repeat, genetic

palindrome and palindrome, respectively. Second

replace this operation is expressed as (r, p, char) which

means replacing the exact repeat, genetic palindrome &

palindrome substring at position p by ASCII character

char.

2.5: Decoding

Decoding time, first require on line Library file, which

was created at the time of encoding the input file.

On this particular value, the encoded input string is

decoded and produces the output original file.

2.6: Algorithms

2.6:1: Encoding algorithm for RGP
2

1. Check for replaced character, if found just in

shift in right direct ran.

2. Replace the first three consecutive replaceable

symbol by the available special symbol in

sequential order.

3. Check for the repeat, genetic palindrome and

palindrome for the rest of the part of the string

it repeat found replace it by the symbol used for

the replacement of the first three symbol for

RGP
2

Coding
Huffman

Coding

Result(O2) O1 Source

Syed Mahamud Hossein, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 2, February -2017, pp. 14-19

ISSN: 2395-3519

www.ijatca.com 16

genetic palindrome and palindrome respectively

use the equivalent character of additive ASCII

value 72 and 144 respectively.

4. During each pass place only one entry in the

library file against the original replaceable

characters with the replaced one Rest, means

genetic palindrome and palindrome can be

calculated during replacement by adding 72 and

144 respectively.

5. Continue step 1 to 4 until no three consecutive

replaceable symbol exit.

6. stop.

2.6:2: Decoding algorithm RGP
2

1. Extract the character

2. Check if it is within ‗a‘, ‗t‘, ‗g‘, ‗c‘ just

directly put if not among those character replace

by equivalent umbination reading from ‗a‘, ‗t‘,

‗g‘, ‗c‘ by checking it with all replace character

entry from library file .

3. If direct match replace exactly with the entrees

available in the library else replace by genetic

palindrome or palindrome of that if match

found with the 72 and 144 adetive value ASCII

character of the give in library.

4. Continue until full string lossy either of ‗a‘, ‗t‘,

‗g‘ and ‗c‘.

2.6.3 Algorithm for Scheme-I of Huffman’s

This algorithm recursively find a weighted binary tree

with n given weights w1, w2, ….wn. (Here weights mean

frequency of n characters in text). LEVEL is the input

where the tree is altered.

1. Arrange the weights in increasing weights.

2. Construct two leaf vertices with minimum weights,

say wi and wj in the given weight sequence and parent

vertex of weight wi + wj.

3. Rearrange remaining weights (excluding wi and wj

but including parent vertex of weight wi + wj) in

increasing order.

4. Repeat step 2 until no weight remains.

5. Find out left most node and right most node at

specified LEVEL and interchange their position with

respect to their parent node.

6. To find out code for each given weights (i.e.

frequency of characters) traversing tree from root assign

0 when traverse left of each node & 1 when traverse

right of each node.

2.6.4 Algorithm for scheme-II of Huffman’s

This algorithm recursively find a weighted binary tree

with n given weights w1, w2, ….wn. (Here weights mean

frequency of n characters in text). LEVEL is the input

where the tree is altered.

1. Arrange the weights in increasing weights.

2. Construct two leaf vertices with minimum weights,

say wi and wj in the given weight sequence and parent

vertex of weight wi + wj.

3. Rearrange remaining weights (excluding wi and wj

but including parent vertex of weight wi + wj) in

increasing order.

4. Repeat step 2 until no weight remains.

5. Find out two nodes at specified LEVEL by binary

digits and interchange their position with respect to their

parent node.

6. To find out code for each given weights (i.e.

frequency of characters) traversing tree from root assign

0 when traverse left of each node & 1 when traverse

right of each node.

III. ALGORITHM EVALUATION

3.1: Accuracy

The DNA sequence storage, accuracy must be taken

firstly in that even a single base mutation, insertion,

deletion would result in huge change of phenotype. It is

not tolerable that any mistake exists either in

compression or in decompression. For accuracy purpose

develop string matching algorithm to check one by one

character.

3.2: Efficiency

This algorithm can compress original file from

substring length (l) into 1 character for any DNA

segment, and destination file uses less ASCII character

to represent successive DNA bases than source file.

3.3: Space Occupation

This algorithm reads characters from source file and

writes them immediately into destination file. It costs

very small memory space to store only a few characters.

The space occupation is in constant level.

.

IV. EXPERIMENTAL RESULTS

This technique test on standard benchmark data used

in[12,23]. The definition of the compression ratio [29];

1− (|O|/2| I|),

 where |I| is number of bases in the input DNA

sequence and |O| is the length (number of bits) of the

output sequence,

the compression rate[29], which is defined as (|O|/| I|),

 where |I| is number of bases in the input DNA

sequence and |O| is the length (number of bits) of the

output sequence and improvement[29] over RGP
2
;

(Ratio_of_O1 – Ratio_of_O2)/Ratio_of_O1)*100.

The compression ratio and rate shown in the table-I,

improvement result also show in the same table. Our

result compare with Table-II result, also last Colum

showing the improvement over ‗gzip‘.

Syed Mahamud Hossein, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 2, February -2017, pp. 14-19

ISSN: 2395-3519

www.ijatca.com 17

Table I: Each row displays the compression ratio and rate for each DNA sequence

Graph I: Compression ratio & rate w.r.t.O1 and O2 (data

set-I)

Graph II: Compression ratio & rate w.r.t.O1 and O2 (data

set-II)

D
at

a
se

t

S
eq

u
en

ce
 N

am
e

B
as

e
p

ai
r/

F
il

e
si

ze
 Result of RGP

2
(O1) Our result(O2)

Im
p

ro
v

em
en

t

C
o

m
p

re
ss

io
n

ra
ti

o

C
o

m
p

re
ss

io
n

ra
te

(
b

it
s

/b
as

e)

C
o

m
p

re
ss

io
n

ra
ti

o

C
o

m
p

re
ss

io
n

ra
te

(
b

it
s

/b
as

e)

D
at

a
se

t-
I

MTPACGA 100314 -0.784636 3.569272 -0.104253 2.208505

3
6

.8
2

 %

MPOMTCG 186608 -0.797222 3.594444 -0.154677 2.309354

CHNTXX 155844 -0.800621 3.601242 -0.14109 2.28218

CHMPXX 121024 -0.77697 3.55394 -0.096477 2.192953

HUMGHCSA 66495 -0.795443 3.590887 -0.159365 2.318731

HUMHBB 73308 -0.791564 3.583129 -0.157309 2.314618

HUMHDABCD 58864 -0.788801 3.577603 -0.113822 2.227643

HUMDYSTROP 38770 -0.802218 3.604436 -0.134382 2.268765

HUMHPRTB 56737 -0.798403 3.596806 -0.1137 2.2274

VACCG 191737 -0.791642 3.583283 -0.111418 2.222836

HEHCMVCG 229354 -0.780061 3.560121 -0.163267 2.326535

Average ---- --- 3.583196 --- 2.263592

D
at

a
se

t-
II

atatsgs 9647 -0.820669 3.641339 -0.117445 2.234891

3
7
.1

9
%

atef1a23 6022 -0.831949 3.663899 -0.131849 2.263699

atrdnaf 10014 -0.808667 3.617335 -0.153984 2.307968

atrdnai 5287 -0.836202 3.672404 -0.146964 2.293928

celk07e12 58949 -0.816010 3.632020 -0.120290 2.240580

hsg6pdgen 52173 -0.795181 3.590362 -0.160216 2.320433

mmzp3g 10833 -0.815563 3.631127 -0.146866 2.293732

xlxfg512 19338 -0.787568 3.575137 -0.136001 2.272003

Average 3.627953

 2.278404

http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512

Syed Mahamud Hossein, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 2, February -2017, pp. 14-19

ISSN: 2395-3519

www.ijatca.com 18

Table II: Comparison of Compression rate

Graph III: Line chart shows the comparison of compression ratio of above algorithm in table1I

V. RESULT DISCUSSION

In Table 1 showing the result of this two algorithms for

data set –I and II, drawn the corresponding graphical

representation in graph I & II. Also in table 2 showing

the earlier result of gzip, LZ77, LZ78, LZW, ROY etc

and compared this result with others and improved

showing the same table in last Colum. The comparative

result also graphically shown in graph III. From this

experiment, conclude that internal repeat, genetic

palindrome and palindrome matching patter are same in

all type of sources and Look up Table plays a key role

S
eq

u
en

ce
 N

am
e

B
as

e
p

ai
r/

 F
il

e

si
ze

g
zi

p

O
u

r
re

su
lt

(O
2
)

Im
p

ro
v

em
en

t

S
eq

u
en

ce
 N

am
e

B
as

e
p

ai
r/

 F
il

e
si

ze

L
Z

7
7

L
Z

7
8

L
Z

W

R
O

Y

C
O

M
R

A
D

 O
2

C
o

m
p

re
ss

io
n

R
at

io

C
o

m
p

re
ss

io
n

R
at

io

C
o

m
p

re
ss

io
n

R
at

io

C
o

m
p

re
ss

io
n

R
at

io

C
o

m
p

re
ss

io
n

R
at

io

C
o

m
p

re
ss

io
n

R
at

io

C
o

m
p

re
ss

io
n

R
at

io

C
o

m
p

re
ss

io
n

R
at

io

MTPACGA 100314
2.2922

2.2085

0
.5

1
%

atatsgs 9647 2.428981

3.023654

3.023654

5.503137

2.685691 2.234891

MPOMTCG 186608
2.3291

2.3093 atef1a23 6022 2.334222

2.830354

2.830354

6.929804

3.552802

2.263699

CHNTXX 155844
2.3349

2.2821 atrdnai 5287 2.392984

2.817479

2.817479

6.617621

3.382597

2.293928

CHMPXX 121024

2.2821

2.1929

chmpxx 15180

2.620404

 .393696

3.393696

4.781102

2.484452

2.192953

HUMGHCSA 66495
2.0655

2.3187 humdystrop 38770 2.567358

3.604835

3.604835

4.924425

2.387021

2.268765

HUMHBB 73308

2.3146 humghcsa 66495 2.628261

3.868575

3.868575

11.22847

2.265125

2.318731

HUMHDABCD 58864
2.2399

2.2276 Average 2.495368 3.256431 3.256431 6.664093 2.792948 2.26216

HUMDYSTROP 38770
2.3633

2.2687 Improvement

HUMHPRTB 56737
2.2670

2.2274

VACCG 191737
2.2520

2.2228

HEHCMVCG 229354
2.3278

2.3265

Average ---- 2.2753 2.2635

atatsgs 9647 2.1702
2.234891

atef1a23 6022 2.0379
2.263699

atrdnaf 10014 2.2784
2.307968

atrdnai 5287 1.8846
2.293928

celk07e12 58949 --
2.240580

hsg6pdgen 52173 2.2444
2.320433

mmzp3g 10833 2.3225
2.293732

xlxfg512 19338 1.8310
2.272003

 2.2784

http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512

Syed Mahamud Hossein, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 2, February -2017, pp. 14-19

ISSN: 2395-3519

www.ijatca.com 19

in finding similarities or regularities in DNA sequences.

Output file are encrypted by the Human‘s key, so the

compress data is very important for data protection over

transmission point of view. These techniques provide the

high security to protect nucleotide sequence in a

particular source.

VI. CONCLUSION

This DNA compression algorithm overcomes the binary

coding and Huffman‘s coding problem. This method is

fails to achieve higher compression rate than others

standard method, but it has provide very high

information security.

Important observations are:

a) Repeat, genetic palindrome and palindrome

substring length vary from 2 to 5 and no match found in

case the substring length becoming six or more. The

substring length, three is highly compressible over

substring length of four or above.

b) Also library file of subsequence size 3 is the key

role of codon table.

FUTURE WORK
Try to reduce the time complexity, improve compression

rate and ratio.

ACKNOWLEDGEMENT
Above all, authors are grateful to all our colleagues for

their valuable suggestion, moral support, interest and

constructive criticism of this study. The author offer

special thanks to Ph.D guides for helping in carrying out

the research work.

REFERENCES

[1]. International nucleotide sequence database

collaboration, (2013),[Online]. Available:

http://www.insdc.org.

[2]. Karsch-Mizrachi, I., Nakamura, Y., and Cochrane, G.,

2012, The International Nucleotide Sequence Database

Collaboration, Nucleic Acids Research, 40(1), 33–37.

[3]. Deorowicz, S., and Grabowski, S., 2011, Robust

relative compression of genomes with random access,

Bioinformatics, 27(21), 2979–2986.

[4]. Brooksbank, C., Cameron, G., and Thornton, J., 2010,

The European Bioinformatics Institute‘s data resources,

Nucleic Acids Research, vol. 38, 17-25.

[5]. Shumway, M., Cochrane, G., and Sugawara, H., 2010,

Archiving next generation sequencing data, Nucleic Acids

Research, vol. 38, 870-871.

[6]. Kapushesky, M., Emam, I., Holloway, E., et al. , 2010,

Gene expression atlas at the European bioinformatics

institute, Nucleic Acids Research, 38(1), 690-698.

[7]. Ahmed A., Hisham G., Moustafa G., et al., 2010,

EGEPT: Monitoring Middle East Genomic Data, Proc., 5th

Cairo International Biomedical Engineering Conf., Egypt,

133-137.

[8]. Korodi, G., Tabus, I., Rissanen, J., et al., 2007, DNA

Sequence Compression Based on the normalized maximum

likelihood model, Signal Processing Magazine, IEEE, 24(1),

47-53.

[9]. Mr Deepak Harbola1 et al. State of the art: DNA

Compression Algorithms, International Journal of Advanced

Research in Computer Science and Software Engineering,

2013, pp 397-400.

[10]. A. Postolico, et al., Eds., DNA Compression Challenge

Revisited: A Dynamic Programming Approach, Lecture

Notes in Computer Science, Island, Korea: Springer, 2005,

vol. 3537, 190–200.

[11]. Nour S. Bakr1, Amr A. Sharawi, ‗DNA Lossless

Compression Algorithms: Review ‗, American Journal of

Bioinformatics Research, 2013 pp 72-81

[12]. S. Grumbach and F. Tahi, ―A new challenge for

compression algorithms: Genetic sequences,‖ J. Inform.

Process. Manage., vol. 30, no. 6, pp. 875-866, 1994.

[13]. X. Chen, S. Kwong and M. Li, ―A Compression

Algorithm for DNA Sequences and its Applications in

Genome Comparison,Genome Informatics, 10:52–61, 1999.

[14]. Bell, T.C., Cleary, J.G., and Witten, I.H., Text

Compression, Prentice Hall, 1990.

[15]. Matsumoto, T., Sadakane, K., and Imai, H., 2000,

Biological Sequence Compression Algorithms, Genome

Informatics, 2000,pp 43–52.

[16]. Giancarlo, R., Scaturro, D., and Utro, F., 2009, Textual

data compression in computational biology: a synopsis,

Bioinformatics, 25(13), 1575–1586.

[17]. Nalbantog̃lu, Ö. U., Russell, D.J., and Sayood, K.,

2010, Data Compression Concepts and Algorithms and their

Applications to Bioinformatics, Entropy, 12(1), 34-52.

[18]. Ma,B., Tromp,J. and Li,M. (2002) PatternHunter—

faster and more sensitive homology search. Bioinformatics,

18, 440–445.1698

[19]. Syed Mahamud Hossein et al.A Compression &

Encryption Algorithm on DNA Sequences Using Dynamic

Look up Table and Modified Huffman Techniques, I.J.

Information Technology and Computer Science, 2013, pp

39-61

[20]. Md. Syed Mahamud Hossein,A Compression and

Encryption Algorithms on DNA Sequences using R2CP and

Modified Huffman Technique, International Journal of

Computer Applications , 2012 ,pp 1-10

[21]. Dhajvir Singh Rai et al., Survey of Compression of

DNA Sequence, International Journal of Computer

Applications, 2013, pp- 52-58

[22]. Jie Liu et al., A Fixed-Length Coding Algorithm for

DNA Sequence Compression(Draft,using Bioinformatics

LATEX template), Bioinformatics,2005,pp 1–3

[23]. Xin Chen, San Kwong and Mine Li, ―A Compression

Algorithm for DNA Sequences Using Approximate

Matching for Better Compression Ratio to Reveal the True

Characteristics of DNA‖, IEEE Engineering in Medicine

and Biology, 2001, pp 61-66

