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Abstract: Randomization has become a standard approach in algorithm design due to its efficiency and 

simplicity. It has been used in wide spread applications, especially in the areas of communication, cryptography, 

data management, and discrete optimization. This paper is aimed towards exploring the paradigms of 

Randomized algorithms. The paper also gives some applications of randomized algorithm in different areas and 

concludes giving future application areas.  
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I. INTRODUCTION 
A randomized or probabilistic algorithm is an 

algorithm where the result and/or the way the result 

is obtained depend on chance or probability. It can 

also be defined as “Any algorithm that works for all 

practical purposes but has a theoretical chance of 

being wrong” [1]. These algorithms employ 

randomness as part of its logic.  

 

A deterministic algorithm is one that always 

behaves in the same way given the same input. In 

other words the input completely determines the 

sequence of computations performed by the algorithm. 

On the other hand, randomized algorithms works not 

only on the input but also involves several 

random choices. The same randomized algorithm, 

given the same input multiple times, may perform 

different computations in each invocation.  

 

The randomized algorithm can be broadly categorized 

as:  

Monte Carlo algorithm: A randomized 

algorithm that may produce incorrect results. If 

these algorithms are run repeatedly (on the same input) 

with independent random choices at each time, the 

failure probability can be made arbitrarily small, at 

the expense of running time.  

 

Las Vegas algorithm: A randomized algorithm 

that always produces correct results, with the only 

variation from one run to another being its running 

time.  
 

II. DESIGN MODELS  
The randomized algorithms have to work 

efficiently and correctly with high probability on every 

input, i.e., they must be reliable for each input. This 

requirement gives a direction towards designing 

randomized algorithm[2]. Below we consider two 

different design models of randomized algorithms [3].  

 

2.1 Design Model I  
This model considers a randomized algorithm R as a 

probability distribution over a finite collection of 

deterministic algorithms i.e.  

 

Let I = {w0, w1 …} // Set of inputs  

 S = {A0,…An}   // Set of deterministic 

algorithms  

 

Then R = ∆S where ∆S is the probability 
distribution of the set S. For any input w € I, R 

chooses an Ai € S at random i.e. with some 

probability and lets Ai work on w. After the 

random choice the rest of the computation is 

completely deterministic. This model is shown in the 

Figure 1. 
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Figure 1: Model I 

 

2.2 Design Model II  

In this model we represent a randomized 

algorithm as a nondeterministic algorithm with a 

probability distribution for every 

nondeterministic choice i.e. repeated random choice 

are made after some deterministic parts of 

computations. This approach builds a probabilistic 

tree (Figure 2) where each branch can be chosen with 

some probability.   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Model II 
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III. Paradigms of Randomized 

algorithm 
 

Here we discuss some paradigms that lie at the 

heart of all Randomized algorithms irrespective 

of the application area [4] [1]. 

 

3.1 Random Sampling 

A random sample from a population representative of 

the population as a whole. In random sampling, also 

known as A random sample from a population is  

representative of the population as a whole. In random 

sampling, also known as probability sampling, every 

combination of items from the frame, or stratum, has a 

known probability of occurring, but these probabilities 

are not necessarily equal [4]. In Simple random 

sampling and Bernoulli sampling each element has an 

equal probability of being selected. Bernoulli sampling 

leads to a variable sample size, while during simple 

random sampling the sample size remains constant. 

Other examples of probability sampling include 

stratified sampling, multistage sampling, Poisson 

sampling etc. 
 

3.2 Abundance of witness 
In most cases, the algorithms are written to determine 

certain property on a given input. The most common 

example could be to find whether an input x is prime or 

not. To ascertain the property deterministically we will 

have to find witness that will practically lie in a large 

search space and to exhaust the space may become 

difficult. The alternative approach would be to construct 

the large space and then choose witness at random from 

the space.  

Abundance of witness [1] has been used extensively in 

testing primality of a number. Fermat Little Theorem is 

a method used for primality testing. It says if p is a 

prime number and a is a positive integer less than p, 

then 

 

a
(p-1)

 = 1 ( mod p ) 

 

To check primality of p, randomly choose a, such that a 

< p and then calculate the above equation. If result is 

not 1, then p can’t be prime. If the result is 1, iterate the 

above step and if every time we get 1 as a result, then 

there is a very high probability that p is prime. More the 

iterations we do, the higher is the probability that our 

result is correct. Other methods for primality test 

include Solovay and Strassen algorithm and Miller-

Rabin primality test. Another commonly explored 

example in this domain is Identity Problem that checks 

the equivalence of two polynomials. 

 

3.3 Foiling the adversary 
Adversary is an important thing while designing 

algorithms. Designer design an efficient algorithm for a 

given problem and an adversary construct an input on 

which the algorithm does not work efficiently or even 

correctly. This is the typical way for designing and 

analyzing deterministic algorithms, where the adversary 

establishes a lower bound on the complexity of a given 

algorithm [4].  
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In case of randomized algorithm one does not know 

which of the possible runs of the algorithm will be 

chosen at random[2]. While an adversary may still be 

able to construct an input that is hard for one run, it is 

difficult to devise a single input that will defeat most of 

the runs of randomized algorithm. If one designs a 

randomized algorithm as a probability distribution over 

a convenient set of deterministic algorithms, then this 

algorithm works correctly and efficiently on every 

problem instance with high probability. 

 

3.4 Fingerprinting 
Fingerprinting is a method primarily for solving 

equivalence problems [1]. An equivalence problem can 

be described to find that whether two different objects 

representation describe the same object or not. The 

method uses a short representation of objects to 

compare the actual complex objects. The complex 

objects are mapped to their shorter partial representation 

by using techniques like hashing. These shorter versions 

are called as fingerprints. These fingerprints are 

compared to find equivalence.  

This method have been successfully used in matching 

long strings where long strings are randomly mapped to 

short strings and short ones are compared. It is also 

been used in finding error during transfer of data in 

networks [5]. 

 

3.5 Random Rounding  
Random rounding is a special case of random 

sampling. Instead of picking up samples from a set S 

by uniform probability distribution over S, one applies 

the relaxation method in order to compute another 

probability distribution over S, and then uses 

this probability distribution for random sampling in S 

[1]. This technique is been used in designing a 

randomized approximation algorithm for MAX-SAT 

problem.  

 

3.6 Rapidly Mixing Markov Chains  
A Markov chain is a sequence of random 

variables with the Markov property. Markov 

property says that given the present state, the future 

and past states are independent. Markov chains 

are often described by a directed graph, where 

the edges are labeled by the probabilities of going 

from one state to the other states.  

A fundamental result about Markov chains says 

that a finite state irreducible aperiodic chain has 

a unique stationary distribution p and, regardless 

of the initial state, the time(t) distribution of the 

chain converges to p as t tends to infinity [6]. The 

counting problems such as the number of graph 

colorings of a given n vertex graph can be 

answered using the Markov chain Monte Carlo 

method. This method has also been used in Image 

analysis and matching.  

 

3.7 Random Projections  

Random projections are a powerful method for 

dimensionality reduction. In random projection, the 

original d-dimensional data is projected to a k-

dimensional (k << d) subspace through the origin, using 

a random k × d matrix R whose columns have unit 

lengths[7]. The basis for random mapping arises from 

the Johnson-Lindenstrauss lemma: “If points in a vector 

space are projected onto a randomly selected subspace 

of suitably high dimension, then the distances between 

the points are approximately preserved”. The choice of 

the elements of random matrix R is mostly based on 

Gaussian distributed but other methods are available 

[7]. This method have been used in applications 

involving data with high dimensions. Examples includes 

data mining, image analysis etc. 

 

IV. APPLICATION AREAS 
 

Randomization can be used to either find a solution to a 

problem or to improve a solution to a problem. Here we 

discuss some areas where randomization has been used.  

 

4.1 Data Structures  
Randomization can be used to improve basic data 

structures operations like sorting, searching or 

implementing dictionary operations [8]. In this context, 

an interesting data structures, skip lists have been 

proposed and used. Skip lists are an alternative to 

balanced binary search tress. Skip lists uses 

randomization in arranging items in such a way that the 

average search and updates operation takes O(log n) 

time (n been the number of items in the list). 

Another commonly used example is randomized quick 

sort. The quick sort in its worst case takes O(n2) time 

and it depends on the input type. If the input is sorted 

then it takes this worst case scenario. So to avoid this 

situation we can randomize the input so that there is a 

high probability of not getting the sorted sequence and 

hence the algorithm runs in O(nlogn) running time.  

 

4.2 Network Applications  
The problem that usually arises in distributed databases 

is ensuring consistency of the distributed nodes [4]. Let 

node A and B be at different location and connected 

with a network. A holds a string “a” while node B holds 

a string “b” where a, b € {0, 1}n. The problem is to find 

whether a = b. The obvious way is that A sends the 

string “a” to B who checks whether a = b. But this takes 
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n bits of communication and n could be large. If we 

consider bandwidth to be an issue then this solution is 

not appropriate but this solution will always give correct 

result. This problem can be solved using randomization 

and using lesser bandwidth. The solution can be given 

as below [9]:  

 

1. The strings “a” and “b” can be seen as a binary 

representation of the integers within the range 0, 1, 2 … 

2n-1.  

 

2. Let pi be the ith the prime number where p1 = 2, p2 

= 3, p3 = 5, p4 = 7, and so on.  

 

3. Using one of the common form of celebrated 

Chinese reminder theorem which says that for integers a 

and b and S = {1, 2, 3 …} is a finite set such that 0 

<=a, b <= p(S) where  

 

 

 

 

then a = b iff a mod pi = b mod pi for all i  

 

4. Node A picks up i at random from the set {1, 2, 3 

… n} and calculate fa = a mod pi. Send (i, fa) to node 

B. The length of fa is less than length of a.  

 

5. Node B receives the pair (i, fa) and calculates fb = 

b mod pi.  

 

6. If fa = fb then a = b else a  

Another problem could be controlling congestion in the 

networks. The routing able normally used is static in 

nature and the network traffic always follows a 

deterministic path may result in congestion. The 

problem can be solved using a probabilistic routing 

table [10] where each path has a probability associated 

with it. 

 

4.3 Data Security  
Data security involves a lot of Encryption 

algorithms which are mostly deterministic in 

nature. A new approach of Probabilistic 

Encryption [11] has been developed that works better 

than the deterministic algorithm. An encryption 

scheme normally consists of three parts: 

Encryption algorithm, Decryption algorithm and 

a key generator algorithm. In the Probabilistic 

Encryption approach the key generator is made 

probabilistic in nature. The key generator algorithm 

due to Goldwasser and Micali [11] is as follows:  

 

1. Randomly select two large primes’ p & q such 

that p  

 

2. Let n = pq.  

 

3. Select a pseudosquare x i.e. x is quadratic non-

residue and Jacobi(x,n) = 1.  

 

4. Public key is (n, y), the private key is (p, q).  

 

Here the pseudosquare x required can be found by a 

probabilistic algorithm that picks x at random until 

Jacobi(x, p) = Jacobi(x, q) = -1. Further assuming the 

hardness of QRP, the encryption scheme has been 

proved to be semantically secure. 

 

4.4 Data mining  
Data mining research during the last years has led to the 

development of a variety of algorithms for finding 

frequent sequential patterns in very large databases [12]. 

A sequential pattern is a subsequence that appears 

frequently in a sequence database.  

The problem of mining sequential patterns is formulated 

as: Assume a set L = {i1, i2 ... im} consisting of m 

distinct elements. Now consider the sequence S that is 

formed from elements of the set L and the number of 

elements in S is much larger than that in L. The problem 

is to find the most frequent subsequences (determined by 

a threshold frequency) in S. The probabilistic algorithm 

for mining frequent sequence as given [12] is based on 

the estimation of the following statistical characteristics 

of the sequences:  

 

• Probability of element in the sequence  

• Probability for one element to appear after another 

one  

• Average distance between different elements of the 

sequence.  

 

V. SOME MATHEMATICAL 

RESULTS 
 

5.1 Probabilistic method  

 

The probabilistic method is a combinatorial 

technique to use probabilistic algorithms to create 

objects having desirable properties and to prove that 

such objects exist. The technique is based on two basic 

observations [5]:  

• If E[X] = , then there exists a value x of X, such that 

x >= E[X].  

• If the probability of event E is larger than zero, then E 

exists and it is not empty. 
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These simple but powerful observations have been used 

to produce solutions to many problems. To explain the 

use of above let us consider the following problem:  

“For any set of m clauses, there is a truth assignment 

of variables that satisfies at least m/2 clauses” [5].  

The solution can be given as [5]: Assign every variable 

a random value. Clearly, a clause with k variables, has 

probability 1 - 2 to be satisfied. Using linearity of 

expectation, and the fact that even clause has at least 

one variable, it follows, that E[X] = m/2, where X is the 

random variable counting the number of clauses being 

satisfied. In particular, there exists an assignment for 

which X >= m/2.  

The probabilistic method with conditional probabilities 

has also been used in solving the graph problems like 

chromatic number, crossing numbers etc.  

 

5.2 The Chebyshev inequality 

 

The Chebyshev inequality indicates that for a 

random variable X, 

 

 

 

 

This could be easily derived using Markov 

inequality. Chebyshev inequality has been useful 

in solving problems like finding reachability in 

graphs.  

 

5.3 The Chernoff Bound  

We give here a special case of Chernoff Bound: 

Let X1 . . . Xn be n independent random 

variables, such that Pr[Xi = 1] = Pr[Xi= -1] = ½ , 

for i = 1, . . . , n. Let Y = ∑ Xi for all i from 1 to n. 

Then, for any ∆ > 0, we have  

 

 

 

The most common application of Chernoff 

Bound can be seen in routing in parallel 

computer [5].  

 

5.4 Lova’sz Local Lemma  

Let G(V,E) be a dependency graph for events C1, . . . 

, Cn. Suppose that there exist xi € [0,1], for 1 <= i 

<= n such that:  

 

 

 

 

then  

 

 

 

 

The lemma has been used to find solutions to many 

complex problems. K-SAT is an example of a 

problem for which solution has been proposed using 

this lemma [11]. 

  

VI. TESTING RANDOMIZED 

ALGORITHM 

Randomized algorithms are sometimes much better 

in terms of performance or sometimes even 

complexity from their deterministic alternatives. 

Formal verification methods [14] are normally 

used to verify randomized algorithms as black-

box testing is limited to statistical error reports. 

Also we need to look into new sets of errors that 

arise due the implementation difficulty of 

randomized algorithm. In case of Randomized 

algorithms one has to be avoid errors mathematically 

and also have to remember that there is a certain 

uncertainty associated while using randomized 

algorithm.  

Future Directions 
In the recent past new randomized 

approximation algorithms have been 

developed for the problems in graphs, Boolean 

algebra, convex bodies and factoring integers [1]. 

Below we give are some problem areas where 

randomization can help:  

  Distributed graph algorithms are mostly 

deterministic which in turn are 

exponentially slower. The use of 

randomization in these algorithms can lead to 

simpler and faster algorithms. Problems like 

message routing, Byzantine agreement etc can be 

solved using randomization [13].  

 The selection and sorting algorithms have been 

using randomization for achieving better run time 

results. The problem is to improve randomized 

algorithms so as to have lower bounds on the number of 

comparisons. Another direction is to de-randomize these 

algorithms i.e. to find deterministic algorithms with the 

same running time bounds.  
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 There are many open problems in the geometrical 

computation. For example, given a simple polygon P 

and a triangle T , is there a sub-quadratic algorithm that 

determines whether T can be placed inside P , allowing 

both translations and rotations. Another related problem 

is: Given a segment e and a polygon P with holes, 

determine, in sub-quadratic time, whether e can be 

placed inside P, using translations and rotations.  

Simulation and gaming involves a lot of randomness 

that can be readily applied in the areas like component 

based software engineering, agent based software 

engineering and other emerging trends in our line of 

business. Testing is another area where the use of 

randomness can be used to forecast potential problems. 
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