
Jaimeen K Patel, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 3, April -2017, pp. 1-6

ISSN: 2395-3519

www.ijatca.com 1

International Journal of Advanced Trends in

Computer Applications
www.ijatca.com

A Survey on Randomized Algorithms and its

Applications
Jaimeen K Patel

1
, Sanjay S

2
,Girish Rao Salanke N S

3

1,2,3 Department of Computer Science and Engineering

R V College of Engineering, Bengaluru, India-560059
1
jaimeenpatel22@gmail.com,

2
sansa091@gmail.com,

3
girishraosalanke@gmail.com

Abstract: Randomization has become a standard approach in algorithm design due to its efficiency and

simplicity. It has been used in wide spread applications, especially in the areas of communication, cryptography,

data management, and discrete optimization. This paper is aimed towards exploring the paradigms of

Randomized algorithms. The paper also gives some applications of randomized algorithm in different areas and

concludes giving future application areas.

Keywords: Algorithm, randomized, deterministic.

I. INTRODUCTION
A randomized or probabilistic algorithm is an

algorithm where the result and/or the way the result

is obtained depend on chance or probability. It can

also be defined as “Any algorithm that works for all

practical purposes but has a theoretical chance of

being wrong” [1]. These algorithms employ

randomness as part of its logic.

A deterministic algorithm is one that always

behaves in the same way given the same input. In

other words the input completely determines the

sequence of computations performed by the algorithm.

On the other hand, randomized algorithms works not

only on the input but also involves several

random choices. The same randomized algorithm,

given the same input multiple times, may perform

different computations in each invocation.

The randomized algorithm can be broadly categorized

as:

Monte Carlo algorithm: A randomized

algorithm that may produce incorrect results. If

these algorithms are run repeatedly (on the same input)

with independent random choices at each time, the

failure probability can be made arbitrarily small, at

the expense of running time.

Las Vegas algorithm: A randomized algorithm

that always produces correct results, with the only

variation from one run to another being its running

time.

II. DESIGN MODELS
The randomized algorithms have to work

efficiently and correctly with high probability on every

input, i.e., they must be reliable for each input. This

requirement gives a direction towards designing

randomized algorithm[2]. Below we consider two

different design models of randomized algorithms [3].

2.1 Design Model I
This model considers a randomized algorithm R as a

probability distribution over a finite collection of

deterministic algorithms i.e.

Let I = {w0, w1 …} // Set of inputs

 S = {A0,…An} // Set of deterministic

algorithms

Then R = ∆S where ∆S is the probability
distribution of the set S. For any input w € I, R

chooses an Ai € S at random i.e. with some

probability and lets Ai work on w. After the

random choice the rest of the computation is

completely deterministic. This model is shown in the

Figure 1.

mailto:jaimeenpatel22@gmail.com

Jaimeen K Patel, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 3, April -2017, pp. 1-6

ISSN: 2395-3519

www.ijatca.com 2

Figure 1: Model I

2.2 Design Model II

In this model we represent a randomized

algorithm as a nondeterministic algorithm with a

probability distribution for every

nondeterministic choice i.e. repeated random choice

are made after some deterministic parts of

computations. This approach builds a probabilistic

tree (Figure 2) where each branch can be chosen with

some probability.

Figure 2: Model II

 Left Margin 17.8 mm (0.67")

 Right Margin 14.3 mm (0.56)

 Top Margin – 17.8 mm (0.7")

 Bottom Margin – 17.8 mm (0.7")

You should use Times Roman of size 10 for all fonts in

the paper. Format the page as two columns:

 Column Width 86.8 mm (3.42")

 Column Height – 271.4 mm (10.69")

 Space/Gap between Columns - 5.0 mm (0.2").

III. Paradigms of Randomized

algorithm

Here we discuss some paradigms that lie at the

heart of all Randomized algorithms irrespective

of the application area [4] [1].

3.1 Random Sampling

A random sample from a population representative of

the population as a whole. In random sampling, also

known as A random sample from a population is

representative of the population as a whole. In random

sampling, also known as probability sampling, every

combination of items from the frame, or stratum, has a

known probability of occurring, but these probabilities

are not necessarily equal [4]. In Simple random

sampling and Bernoulli sampling each element has an

equal probability of being selected. Bernoulli sampling

leads to a variable sample size, while during simple

random sampling the sample size remains constant.

Other examples of probability sampling include

stratified sampling, multistage sampling, Poisson

sampling etc.

3.2 Abundance of witness
In most cases, the algorithms are written to determine

certain property on a given input. The most common

example could be to find whether an input x is prime or

not. To ascertain the property deterministically we will

have to find witness that will practically lie in a large

search space and to exhaust the space may become

difficult. The alternative approach would be to construct

the large space and then choose witness at random from

the space.

Abundance of witness [1] has been used extensively in

testing primality of a number. Fermat Little Theorem is

a method used for primality testing. It says if p is a

prime number and a is a positive integer less than p,

then

a
(p-1)

 = 1 (mod p)

To check primality of p, randomly choose a, such that a

< p and then calculate the above equation. If result is

not 1, then p can’t be prime. If the result is 1, iterate the

above step and if every time we get 1 as a result, then

there is a very high probability that p is prime. More the

iterations we do, the higher is the probability that our

result is correct. Other methods for primality test

include Solovay and Strassen algorithm and Miller-

Rabin primality test. Another commonly explored

example in this domain is Identity Problem that checks

the equivalence of two polynomials.

3.3 Foiling the adversary
Adversary is an important thing while designing

algorithms. Designer design an efficient algorithm for a

given problem and an adversary construct an input on

which the algorithm does not work efficiently or even

correctly. This is the typical way for designing and

analyzing deterministic algorithms, where the adversary

establishes a lower bound on the complexity of a given

algorithm [4].

Jaimeen K Patel, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 3, April -2017, pp. 1-6

ISSN: 2395-3519

www.ijatca.com 3

In case of randomized algorithm one does not know

which of the possible runs of the algorithm will be

chosen at random[2]. While an adversary may still be

able to construct an input that is hard for one run, it is

difficult to devise a single input that will defeat most of

the runs of randomized algorithm. If one designs a

randomized algorithm as a probability distribution over

a convenient set of deterministic algorithms, then this

algorithm works correctly and efficiently on every

problem instance with high probability.

3.4 Fingerprinting
Fingerprinting is a method primarily for solving

equivalence problems [1]. An equivalence problem can

be described to find that whether two different objects

representation describe the same object or not. The

method uses a short representation of objects to

compare the actual complex objects. The complex

objects are mapped to their shorter partial representation

by using techniques like hashing. These shorter versions

are called as fingerprints. These fingerprints are

compared to find equivalence.

This method have been successfully used in matching

long strings where long strings are randomly mapped to

short strings and short ones are compared. It is also

been used in finding error during transfer of data in

networks [5].

3.5 Random Rounding
Random rounding is a special case of random

sampling. Instead of picking up samples from a set S

by uniform probability distribution over S, one applies

the relaxation method in order to compute another

probability distribution over S, and then uses

this probability distribution for random sampling in S

[1]. This technique is been used in designing a

randomized approximation algorithm for MAX-SAT

problem.

3.6 Rapidly Mixing Markov Chains
A Markov chain is a sequence of random

variables with the Markov property. Markov

property says that given the present state, the future

and past states are independent. Markov chains

are often described by a directed graph, where

the edges are labeled by the probabilities of going

from one state to the other states.

A fundamental result about Markov chains says

that a finite state irreducible aperiodic chain has

a unique stationary distribution p and, regardless

of the initial state, the time(t) distribution of the

chain converges to p as t tends to infinity [6]. The

counting problems such as the number of graph

colorings of a given n vertex graph can be

answered using the Markov chain Monte Carlo

method. This method has also been used in Image

analysis and matching.

3.7 Random Projections

Random projections are a powerful method for

dimensionality reduction. In random projection, the

original d-dimensional data is projected to a k-

dimensional (k << d) subspace through the origin, using

a random k × d matrix R whose columns have unit

lengths[7]. The basis for random mapping arises from

the Johnson-Lindenstrauss lemma: “If points in a vector

space are projected onto a randomly selected subspace

of suitably high dimension, then the distances between

the points are approximately preserved”. The choice of

the elements of random matrix R is mostly based on

Gaussian distributed but other methods are available

[7]. This method have been used in applications

involving data with high dimensions. Examples includes

data mining, image analysis etc.

IV. APPLICATION AREAS

Randomization can be used to either find a solution to a

problem or to improve a solution to a problem. Here we

discuss some areas where randomization has been used.

4.1 Data Structures
Randomization can be used to improve basic data

structures operations like sorting, searching or

implementing dictionary operations [8]. In this context,

an interesting data structures, skip lists have been

proposed and used. Skip lists are an alternative to

balanced binary search tress. Skip lists uses

randomization in arranging items in such a way that the

average search and updates operation takes O(log n)

time (n been the number of items in the list).

Another commonly used example is randomized quick

sort. The quick sort in its worst case takes O(n2) time

and it depends on the input type. If the input is sorted

then it takes this worst case scenario. So to avoid this

situation we can randomize the input so that there is a

high probability of not getting the sorted sequence and

hence the algorithm runs in O(nlogn) running time.

4.2 Network Applications
The problem that usually arises in distributed databases

is ensuring consistency of the distributed nodes [4]. Let

node A and B be at different location and connected

with a network. A holds a string “a” while node B holds

a string “b” where a, b € {0, 1}n. The problem is to find

whether a = b. The obvious way is that A sends the

string “a” to B who checks whether a = b. But this takes

Jaimeen K Patel, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 3, April -2017, pp. 1-6

ISSN: 2395-3519

www.ijatca.com 4

n bits of communication and n could be large. If we

consider bandwidth to be an issue then this solution is

not appropriate but this solution will always give correct

result. This problem can be solved using randomization

and using lesser bandwidth. The solution can be given

as below [9]:

1. The strings “a” and “b” can be seen as a binary

representation of the integers within the range 0, 1, 2 …

2n-1.

2. Let pi be the ith the prime number where p1 = 2, p2

= 3, p3 = 5, p4 = 7, and so on.

3. Using one of the common form of celebrated

Chinese reminder theorem which says that for integers a

and b and S = {1, 2, 3 …} is a finite set such that 0

<=a, b <= p(S) where

then a = b iff a mod pi = b mod pi for all i

4. Node A picks up i at random from the set {1, 2, 3

… n} and calculate fa = a mod pi. Send (i, fa) to node

B. The length of fa is less than length of a.

5. Node B receives the pair (i, fa) and calculates fb =

b mod pi.

6. If fa = fb then a = b else a

Another problem could be controlling congestion in the

networks. The routing able normally used is static in

nature and the network traffic always follows a

deterministic path may result in congestion. The

problem can be solved using a probabilistic routing

table [10] where each path has a probability associated

with it.

4.3 Data Security
Data security involves a lot of Encryption

algorithms which are mostly deterministic in

nature. A new approach of Probabilistic

Encryption [11] has been developed that works better

than the deterministic algorithm. An encryption

scheme normally consists of three parts:

Encryption algorithm, Decryption algorithm and

a key generator algorithm. In the Probabilistic

Encryption approach the key generator is made

probabilistic in nature. The key generator algorithm

due to Goldwasser and Micali [11] is as follows:

1. Randomly select two large primes’ p & q such

that p

2. Let n = pq.

3. Select a pseudosquare x i.e. x is quadratic non-

residue and Jacobi(x,n) = 1.

4. Public key is (n, y), the private key is (p, q).

Here the pseudosquare x required can be found by a

probabilistic algorithm that picks x at random until

Jacobi(x, p) = Jacobi(x, q) = -1. Further assuming the

hardness of QRP, the encryption scheme has been

proved to be semantically secure.

4.4 Data mining
Data mining research during the last years has led to the

development of a variety of algorithms for finding

frequent sequential patterns in very large databases [12].

A sequential pattern is a subsequence that appears

frequently in a sequence database.

The problem of mining sequential patterns is formulated

as: Assume a set L = {i1, i2 ... im} consisting of m

distinct elements. Now consider the sequence S that is

formed from elements of the set L and the number of

elements in S is much larger than that in L. The problem

is to find the most frequent subsequences (determined by

a threshold frequency) in S. The probabilistic algorithm

for mining frequent sequence as given [12] is based on

the estimation of the following statistical characteristics

of the sequences:

• Probability of element in the sequence

• Probability for one element to appear after another

one

• Average distance between different elements of the

sequence.

V. SOME MATHEMATICAL

RESULTS

5.1 Probabilistic method

The probabilistic method is a combinatorial

technique to use probabilistic algorithms to create

objects having desirable properties and to prove that

such objects exist. The technique is based on two basic

observations [5]:

• If E[X] = , then there exists a value x of X, such that

x >= E[X].

• If the probability of event E is larger than zero, then E

exists and it is not empty.

Jaimeen K Patel, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 3, April -2017, pp. 1-6

ISSN: 2395-3519

www.ijatca.com 5

These simple but powerful observations have been used

to produce solutions to many problems. To explain the

use of above let us consider the following problem:

“For any set of m clauses, there is a truth assignment

of variables that satisfies at least m/2 clauses” [5].

The solution can be given as [5]: Assign every variable

a random value. Clearly, a clause with k variables, has

probability 1 - 2 to be satisfied. Using linearity of

expectation, and the fact that even clause has at least

one variable, it follows, that E[X] = m/2, where X is the

random variable counting the number of clauses being

satisfied. In particular, there exists an assignment for

which X >= m/2.

The probabilistic method with conditional probabilities

has also been used in solving the graph problems like

chromatic number, crossing numbers etc.

5.2 The Chebyshev inequality

The Chebyshev inequality indicates that for a

random variable X,

This could be easily derived using Markov

inequality. Chebyshev inequality has been useful

in solving problems like finding reachability in

graphs.

5.3 The Chernoff Bound

We give here a special case of Chernoff Bound:

Let X1 . . . Xn be n independent random

variables, such that Pr[Xi = 1] = Pr[Xi= -1] = ½ ,

for i = 1, . . . , n. Let Y = ∑ Xi for all i from 1 to n.

Then, for any ∆ > 0, we have

The most common application of Chernoff

Bound can be seen in routing in parallel

computer [5].

5.4 Lova’sz Local Lemma

Let G(V,E) be a dependency graph for events C1, . . .

, Cn. Suppose that there exist xi € [0,1], for 1 <= i

<= n such that:

then

The lemma has been used to find solutions to many

complex problems. K-SAT is an example of a

problem for which solution has been proposed using

this lemma [11].

VI. TESTING RANDOMIZED

ALGORITHM

Randomized algorithms are sometimes much better

in terms of performance or sometimes even

complexity from their deterministic alternatives.

Formal verification methods [14] are normally

used to verify randomized algorithms as black-

box testing is limited to statistical error reports.

Also we need to look into new sets of errors that

arise due the implementation difficulty of

randomized algorithm. In case of Randomized

algorithms one has to be avoid errors mathematically

and also have to remember that there is a certain

uncertainty associated while using randomized

algorithm.

Future Directions
In the recent past new randomized

approximation algorithms have been

developed for the problems in graphs, Boolean

algebra, convex bodies and factoring integers [1].

Below we give are some problem areas where

randomization can help:

 Distributed graph algorithms are mostly

deterministic which in turn are

exponentially slower. The use of

randomization in these algorithms can lead to

simpler and faster algorithms. Problems like

message routing, Byzantine agreement etc can be

solved using randomization [13].

 The selection and sorting algorithms have been

using randomization for achieving better run time

results. The problem is to improve randomized

algorithms so as to have lower bounds on the number of

comparisons. Another direction is to de-randomize these

algorithms i.e. to find deterministic algorithms with the

same running time bounds.

Jaimeen K Patel, International Journal of Advanced Trends in Computer Applications (IJATCA)

Volume 4, Number 3, April -2017, pp. 1-6

ISSN: 2395-3519

www.ijatca.com 6

 There are many open problems in the geometrical

computation. For example, given a simple polygon P

and a triangle T , is there a sub-quadratic algorithm that

determines whether T can be placed inside P , allowing

both translations and rotations. Another related problem

is: Given a segment e and a polygon P with holes,

determine, in sub-quadratic time, whether e can be

placed inside P, using translations and rotations.

Simulation and gaming involves a lot of randomness

that can be readily applied in the areas like component

based software engineering, agent based software

engineering and other emerging trends in our line of

business. Testing is another area where the use of

randomness can be used to forecast potential problems.

REFERENCES
[1].Karpinski, M., and Verbeek, R., On Randomized versus

Deterministic Computation, Proc. ICALP '93, LNCS 700

(1993), Springer-Verlag, pp. 227–240.

[2].Hromkovich, "Design and Analysis of Randomized

Algorithms: Introduction to Design Paradigms", Springer,

Berlin–Heidelberg (2005).

[3]. J. Hromkovic , I. Z´amecnikov,” Design and Analysis of

Randomized Algorithms: Introduction to Design

Paradigms”, Texts in Theoretical Computer Science, an

EATCS series. Springer, first edition, July 2005. ISBN:

978-3-54023-949-9.

[4].R. Motwani and P. Raghavan, ” Randomized

Algorithms”, Cambridge University Press, 1995.

[5]. Sariel Har-Peled,“Lectures notes on Randomized

Algorithms” ,2005.

[6].D. Randall. Rapidly mixing markov chains with

applicationsin computer science and physics. Computing in

Science and Engineering, 8(2):30–41, 2006.

[7].E. Bingham, H. Mannila, "Random Projection in

Dimensionality Reduction: Applications to Image and Text

Data", Proc. ACM SIGKDD Int'l Conf. Knowledge

Discovery and Data Mining, pp. 245-250, 2001.

[8].Michael T. Goodrich and Roberto Tamassia ,“Using

randomization in the teaching of data structures and

algorithms”, The proceedings of the thirteenth SIGCSE

technical symposium on Computer science education, Pages

53-57 ,1998

[9].Mihir Bellare, "Notes on Randomized Algorithms”,

Computer Science and Engineering, UCSD

[10].E. Bingham, H. Mannila, "Random Projection in

Dimensionality Reduction: Applications to Image and Text

Data", Proc. ACM SIGKDD Int'l Conf. Knowledge

Discovery and Data Mining, pp. 245-250, 2001.

[11].Fuchsbauer, G.J, "An Introduction to Probabilistic

Encryption", Osjecki Matematicki List, 2006. 6 p. 37-44.

[12].Romanas Tumasonis and Gintautas Dzemyda. Analysis

of the statistical characteristics in mining of frequent

sequences. In Intelligent Information Systems, pages 377–

386, 2005.

[13].Rajiv Gupta, Scott A. Smolka, Shaji Bhaskar, "On

Randomization in Sequential and Distributed

Algorithms”,Journal ACM Computing Surveys (CSUR)

,Volume 26 Issue 1, March 1994 ,Pages 7-86 .

[14].Hurd J, ”Formal Verification of Probabilistic

Algorithms”, PhD thesis, University of Cambridge (2002).

