

Feature Extracting Gait to acknowledge illness shisusen algorithms exploitation Multilayered Back Propagation

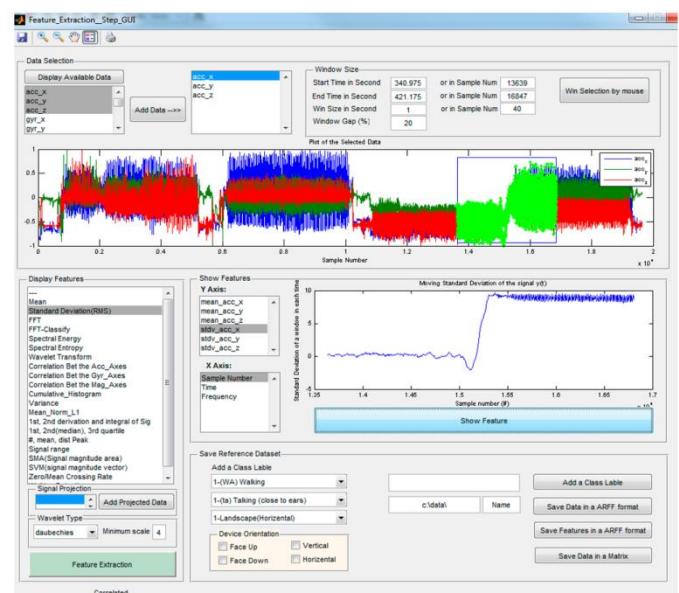
¹Prof P.Senthil

MA., PGDCA., M.Sc., MPhil.,

Associate professor in MCA Computer Science,

Kurinji College of Arts and Science, Tiruchirappalli-620002.India.

senthilkanapathy@gmail.com


Abstract: Human gait provides essential options in crucial the medical specialty disorders like Parkinson's illness. during this paper exploitation gait knowledge we have a tendency to propose a diagnosing system to spot whether or not someone has Parkinson's illness or someone is traditional. Here we have a tendency to collect {the knowledge/the info/the information} set then gather its options exploitation PCA (Principal part Analysis) technique then classify it exploitation numerous machine learning techniques and shows the simplest technique to classify the dataset PDAMDS. Here we have a tendency to designed Statistics analysis and analysis of variance take a look at is additionally done. Classification shows the higher results than the previous classification technique employed by results. Receiver operational characteristic (ROC) curves, at the side of sensitivity, specificity and confusion matrices, square measure wont to analyze classification models.

Keywords: *Humangait, Multiclass Classification, KNN, K-mean.*

I. INTRODUCTION

Through human locomotion we can gather dataset which can be processed and analyzed [1]. This information can be used in many fields like in surveillance system, medical diagnosis and as a biometric identity [2]. By using gait data doctors can differentiate between a normal walking person and a person impaired with Parkinson's Disease and Movement Disorders (PDAMDS). When the treatment and medicines are given to the patient then analyzing the gait features can be one of the important activity to see whether the patient is recovering or not. Parkinson's is a very serious and inoperable disease. It is remediless. A person suffering from Parkinson's cannot be fully cured. But the agony can be minimalized or the growth rate of the disease can be slowed down if found in the premature stages[3]. This can be done with the aid of biometric techniques. We can collect the human locomotion data and check if there is any sign of disorder. We can find out whether the person is walking normally or not. If any disruption is found in the gait of the person we will get to know that there may be chances of disorder and then we can further diagnose the

person based on the collected data to detect the disease. Medication can also be started to fix the disorder.

Fig. 1: PDAMDS symptoms and detection of abnormal

This disease can also be found manually by visiting the doctor in the first place, but the downside of this step is

that the signs of Parkinson's disease are difficult to perceive in premature stages, symptoms are shown in figure 1 but utmost chances are that the person himself/herself will not feel the need to visit a doctor for checkup as he/she may not see that they have a disorder[4]. And even if the patient is well aware of his/her medical condition the manual process is dragged for too long as the medications for such diseases are not started right away. Taking the worst case scenario, maybe when the medications are started it might be too late to cure the disease. So the manual process is not that efficient. Therefore, for such an immedicable disease we require a very accurate detection method[5]. The paper is organized in 5 sections. Section one contains the introduction of literature and projected methodology section 2 contains the information assortment and gait detection ways, section 3 contains the feature extraction and have choice technologies, section four contains numerous} classification ways mistreatment various machine learning techniques and section 5 contains the experiment results and conclusion half.

II. PROPOSED METHODOLOGY

In the proposed (in figure 2) method we first gather the data then extract the features, selected features are passed to classification and then detection of Parkinson's disease can be done [7-20].

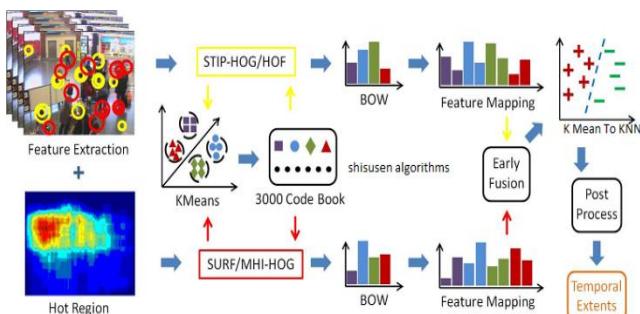
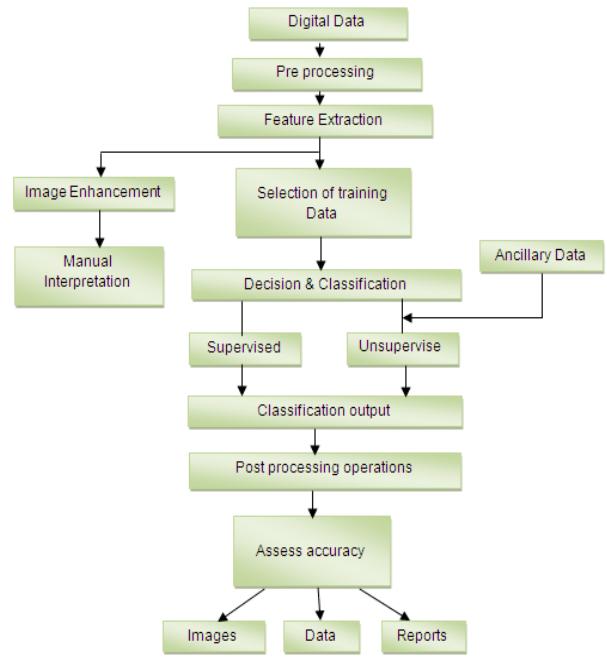



Fig. 2: Proposed system to recognize PDAMS

Flow Chart

SHISUSEN ALGORITHMS

1. $z[i][j] = x[i][j] * y[i][j]$
2. $z[i][j] = x[0][i] * y[j][0]$
3. if $j < x_width$
4. $z[i][j] = x[i][j]$
5. else
6. $z[i][j] = y[i, j - x_width]$
7. $net = \text{mul}(\text{weights}, \text{horcat}(\text{inputs}, \text{bias}))$
8. $\text{output} = \text{activate}(\text{net})$
9. $[\text{output net}] = \text{feedforward}(\text{inputs}, \text{weights}, \text{bias})$
10. $\text{error} = \text{sum_all_components}((\text{target_outputs} - \text{outputs})^2)$
11. $/(sample_count * output_count)$
12. $\text{classes} = \text{classes_from_output_vectors}(\text{outputs})$
13. $c = \text{sum_all_components}(\text{classes}) != \text{target_classes}/sample_count$

III. DATA ACQUISITION

The data is collected from [3]. This is the gait dataset of 166 people. Out of which 93 patients are suffering from Idiopathic Parkinson's disease (63% men, average age is 66.3 years). The rest of the 73 people are healthy and average age of healthy people is found to be 66.3 years out of which 55% are men.

Pressure sensors have been used for collecting the data set. 8 sensors have been put to practical use under each foot of the individual. The output recorded is based on the readings of 16 sensors (i.e. 8 of each foot) and is recorded as 100 samples per second. The final work is taken by 2 signals that mirror the tally of 8 sensors of each foot [28-32].

Inside the Table 1 the first column embodies time (in seconds) and columns 2-9 comprises of vertical ground reaction force (VGRF, in Newton) on all of the 8 sensors pinpointed beneath the left foot [4], likely columns 10-17 comprises of VGRF of all the 8 sensors pinpointed underneath the right foot and column 18 reckons the force under the left foot and column 19 computes the force under the right foot [5].

In the table numbers X as well as Y represents coordinate system mirroring the comparable stance (arbitrarily scaled) of the sensors enclosing insole [6]. Throughout stroll, the sensors within each insole abides at the same comparative stance, apart from that the two feet are not equidistant anymore. Therefore, this coordinate system authorises a computation of a proxy for the whereabouts of the centre of pressure (COP) beneath each foot.

TABLE I: Format of data in dataset

Sensor	X	Y	Sensor	X	Y
L1	-500	-800	R1	500	-800
L2	-700	-400	R2	700	-400
L3	-300	-400	R3	300	-400
L4	-700	0	R4	700	0
L5	-300	0	R5	300	0
L6	-700	400	R6	700	400
L7	-300	400	R7	300	400
L8	-500	800	R8	500	800

IV. FEATURE EXTRACTION

It is quite difficult to work with collected data to classify whether a person is having a normal gait or having Parkinson's disease. So we extract required features from the gathered data and then classification is done on the extracted features. Various classification algorithms will be executed with the goal to classify whether a person is having a normal gait or having Parkinson's disease. The performance of classification algorithms will be analyzed [7].

We extract 6 features listed below from the data set.

TABLE II: Gait evaluation on various parameter

Feature Category	Feature Name
F1	hip_rotation,
F2	pelvis_tilt,
F3	knee_angle_r,
F4	ankle_angle_r,
F5	ankle_angle_l,
F6	lumbar_bending

We have extracted six features, the simulation of dataset is done on OpenSim 3.3. In figure 3, six extracted features are plotted on y-axis with respect to time.

A. Feature Selection

Out of 23 features 6 features were selected from the dataset which is continuously walking (simulating) in OpenSim. For this simulation 'time to walk' is calculated in one gait cycle. Leg signals gives the number of steps, step frequency and variance of step period. Then the median frequency calculated for every sensor is validated. Median Frequency is the half of Power Spectral Density [8].

Table 3 is accuracy table. The PCA used for dimensionality reduction i.e. it is used to convert the higher dimension data into lower dimension space. The PCA which select the only prominent feature vector for K-Mean and KNN [33-36].

TABLE III: Gait Data for subject 1 normal walk

Right Hip	Left Knee	Left Ankle	Left hip	Left Knee	Left Ankle
37.5	-3.97	-2.14	-4.5	-13.86	10
37.2	-7	-3.7	-4.2	-16.97	8.5
36.9	-10.52	-4.8	-2.6	-20.96	6
36.2	-14.12	-4.8	0.1	-26	0
35.7	-17.38	-3.7	2.1	-32.03	-5
34.8	-19.84	-2.14	4.1	-38.74	-9
33.5	-21.27	-1	6.8	-45.6	-12.7
30.7	-21.67	0.6	10.2	-52.05	-13.5
27.4	-21.22	1.8	14	-57.54	-12.7
25.3	-20.2	2.8	18.5	-61.66	-10
23	-18.86	3.9	22	-64.12	-7.1
21	-17.35	4.5	25	-64.86	-4.1
18	-15.73	5.2	27.8	-63.95	-2.1
			30.2		
16	-14.08	5.7	2	-61.59	0
13.8	-12.5	5.9	33	-57.97	1.3
12.4	-11.09	6.2	35	-53.27	2.2

10.8	-9.91	6.8	36.4	-47.58	2.8
8.8	-8.97	7.5	37.8	-40.94	3.1
6.9	-8.28	8.2	38.3	-33.46	2.8
5	-7.86	8.9	38.2	-25.38	2.3
3	-7.72	9.8	37.8	-17.27	1.5
1.2	-7.94	10.5	37.5	-9.94	0.5
0	-8.6	11.2	37.2	-4.31	0.2
-2.4	-9.76	11.5	36.8	-1.12	0
-4.2	-11.5	10.9	37.2	-0.54	0
-4.5	-13.86	10	37.5	-3.97	-2.14
-4.2	-16.97	8.5	37.2	-7	-3.7
-2.6	-20.96	6	36.9	-10.52	-4.8
0.1	-26	0	36.2	-14.12	-4.8
2.1	-32.03	-5	35.7	-17.38	-3.7
4.1	-38.74	-9	34.8	-19.84	-2.14
6.8	-45.6	-12.7	33.5	-21.27	-1
10.2	-52.05	-13.5	30.7	-21.67	0.6
14	-57.54	-12.7	27.4	-21.22	1.8
18.5	-61.66	-10	25.3	-20.2	2.8
22	-64.12	-7.1	23	-18.86	3.9
25	-64.86	-4.1	21	-17.35	4.5
27.8	-63.95	-2.1	18	-15.73	5.2
30.22	-61.59	0	16	-14.08	5.7
33	-57.97	1.3	13.8	-12.5	5.9
35	-53.27	2.2	12.4	-11.09	6.2
36.4	-47.58	2.8	10.8	-9.91	6.8
37.8	-40.94	3.1	8.8	-8.97	7.5
38.3	-33.46	2.8	6.9	-8.28	8.2
38.2	-25.38	2.3	5	-7.86	8.9
37.8	-17.27	1.5	3	-7.72	9.8
37.5	-9.94	0.5	1.2	-7.94	10.5
37.2	-4.31	0.2	0	-8.6	11.2
36.8	-1.12	0	-2.4	-9.76	11.5
37.2	-0.54	0	-4.2	-11.5	10.9
37.5	-2.21	0	-4.5	-13.86	10

We used 30 samples of each category of data for training and 20 data set points for testing. The KNN is applied for classification and the result achieved is given in table2 [37-43].

V. CLASSIFICATION

Classification of gait data is done into two classes i.e. normal and Parkinson's disease. Classification is done by three methods i.e. KNN, KNN, and K-Mean.

A. Multi-Layer Back Propagation KNN

There is an input layer, a hidden layer, and an output layer n Multi-layer neural networks [25]. There can be

more than one output units in Multi-layer neural network. The units of the hidden layer function as input units to the next layer. However, multiple layers of linear units still produce only linear functions [26]. The step function in perceptions is another choice, but it is not differentiable, and therefore not suitable for gradient descent search. The solution is the sigmoid function, a non-linear, differentiable threshold function [27] [28].

B. K-Nearest Neighbors

Few application of k-Nearest Neighbors (k-NN) in GAIT analysis is given in [26]. So here we want to categories the GAIT data.

C. K-Mean

K-mean algorithm is mostly used to do clustering. In this paper also it is used to the clustering but the problem with such unsupervised algorithm is; it is very sensitive for outlier and noise. Therefore it is appropriate with numeric data only[30-39].

VI. EXPERIMENTAL RESULTS AND PERFORMANCE

The ideal locomotion have a exactly sinusoidal curve i.e. oscillatory motion at hip and two sharp humps in knee and two sharp hump like mountain at ankle joint during normal walk without any external perturbation. Fig. 4, 5, 6 is ideal curves for hip, knee and ankle.

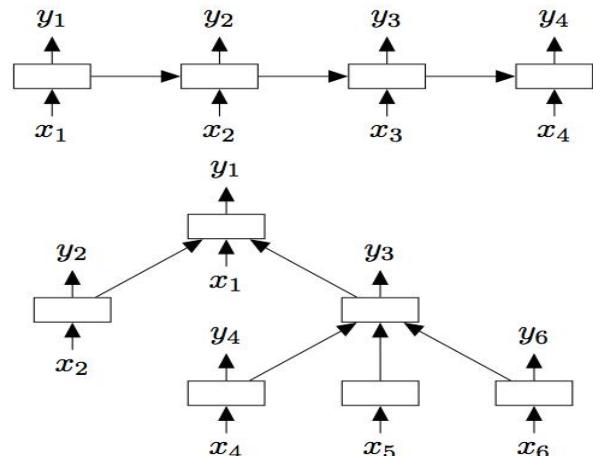


Fig.7: KNN Classification

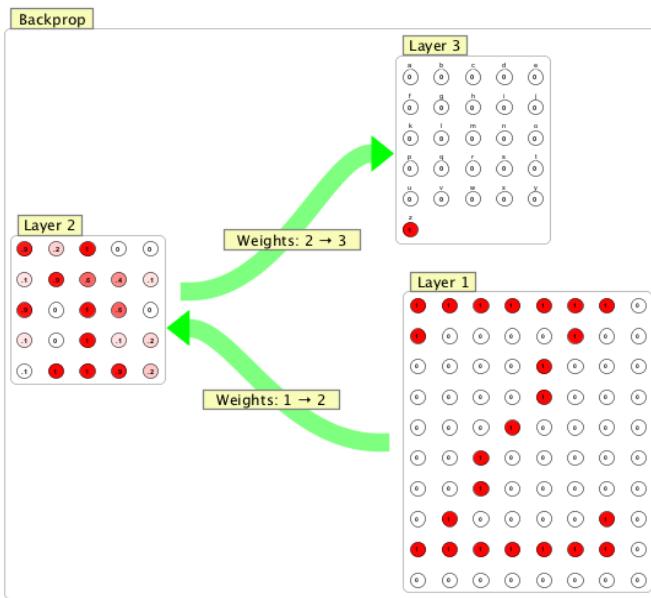


Fig. 8: Regression

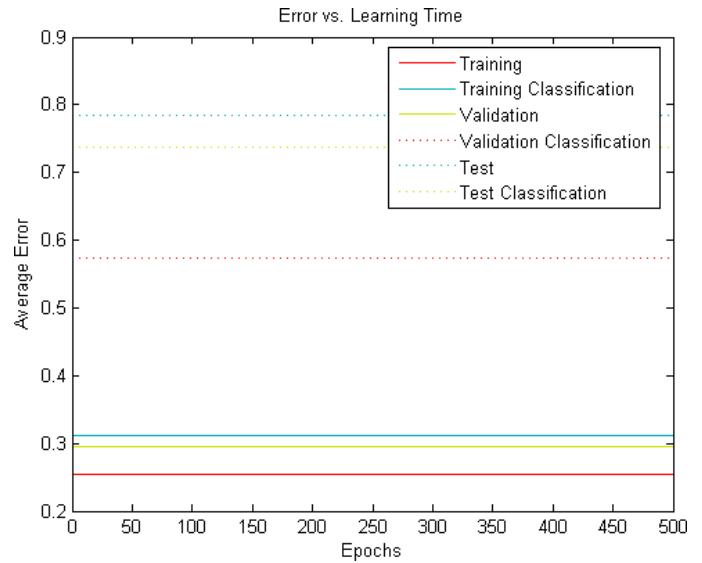


Fig. 10: Result Regression

A. Results

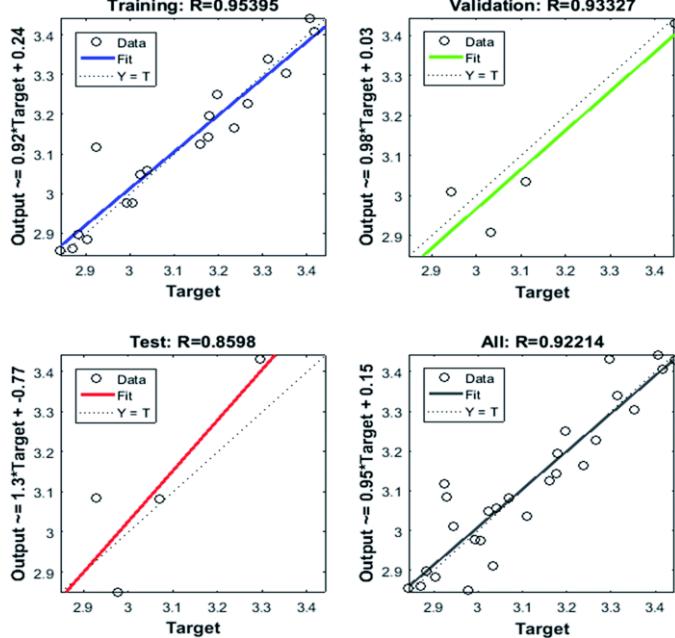
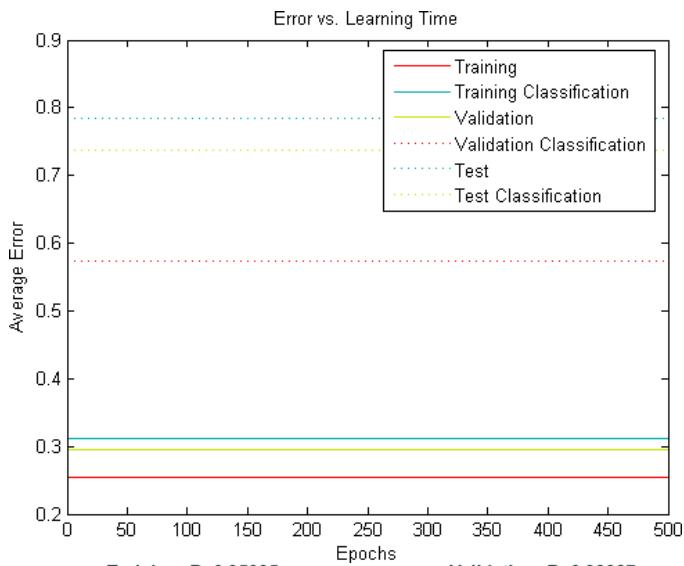



Fig. 9: A Final Results

TABLE III: Gait Data for subject 1 normal walk

K-Mean	KNN(k=1,2,3,4,5) KNN
74.68	100,98,95,92,88 98.02

CONCLUSION

In this analysis a brand new gait identification methodology has been planned. Mistreatment planned methodology the utility of the gait identification will be improved by a lot of correct spatio-temporal modeling. in depth simulation we've shown that with a lot of strong feature extraction techniques. The classification rate and ARA (activity reorganization activity) improved considerably. Identification of abnormality, disorder and forthcoming sickness at the first stage has been the most concern at this analysis. The experimental results incontestable that the planned methodology may accurately recognize totally different activities in each indoor and outside situations whereas maintaining a high recognition accuracy rate. The novel classification may classify GAITs effectively into 2 totally different categories traditional, and abnormal gait. The result has been compared with KNN and K-mean algorithmic rule

and it's been shown that our classified beat out the prevailing classifiers.

ACKNOWLEDGMENT

This paper is made possible through the help and support from everyone, including: My wife M.suganya and Daughter S.S.Inakshi and , and in essence, all sentient beings. I sincerely thank to my parents, Varagupadi N.Periyasamy and P.Chinnaponnu Brother Nallusamy family, and friends, who provide the advice and financial support. The product of this paper would not be possible without all of them.

REFERENCES

[1] Hee J. Kim, Beom S. Jeon, Peter Jenner,Chapter Eleven - Hallmarks of Treatment Aspects: Parkinson's Disease Throughout Centuries Including l-Dopa,International Review of Neurobiology, Volume 132, 2017, Pages 295-343.

[2] Somayeh Aghanavesi, Dag Nyholm, Marina Senek, Filip Bergquist, Mevludin Memedi,A smartphone-based system to quantify dexterity in Parkinson's disease patients,Informatics in Medicine Unlocked, Volume 9, 2017, Pages 11-17.

[3] Clayton R. Pereira, Danilo R. Pereira, Francisco A. Silva, João P. Masieiro, Silke A.T. Weber, Christian Hook, João P. Papa

[4] ,A new computer vision-based approach to aid the diagnosis of Parkinson's disease,Computer Methods and Programs in Biomedicine, Volume 136, November 2016, Pages 79-88.

[5] Ömer Faruk Ertuğrul, Yılmaz Kaya, Ramazan Tekin, Mehmet Nuri Almalı,Detection of Parkinson's disease by Shifted One Dimensional Local Binary Patterns from gait,Expert Systems with Applications, Volume 56, 1 September 2016, Pages 156-163

[6] Saba Bashir, Usman Qamar, Farhan Hassan Khan, Lubna Naseem,HMV: A medical decision support framework using multi-layer classifiers for disease prediction,Journal of Computational Science, Volume 13, March 2016, Pages 10-25.

[7] Khondaker Abdullah Al Mamun, Musaed Alhussein, Kashfia Sailunaz, Mohammad Saiful Islam,Cloud based framework for Parkinson's disease diagnosis and monitoring system for remote healthcare applications,Future Generation Computer Systems, Volume 66, January 2017, Pages 36-47.

[8] Albert Samà, Daniel Rodríguez-Martín, Carlos Pérez-López, Andreu Català, Sheila Alcaine, Berta Mestre, Anna Prats, M. Cruz Crespo, Àngels Bayés,Determining the optimal features in freezing of gait detection through a single waist accelerometer in home environments Pattern Recognition Letters, In Press, Corrected Proof, Available online 17 May 2017.

[9] Mu-ming Poo, Jiu-lin Du, Nancy Y. Ip, Zhi-Qi Xiong, Bo Xu, Tieniu Tan,China Brain Project: Basic Neuroscience, Brain Diseases, and Brain-Inspired Computing, Neuron, Volume 92, Issue 3, 2 November 2016, Pages 591-596

[10] Yi Xia, Qingwei Gao, Qiang Ye,Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models,Biomedical Signal Processing and Control, Volume 18, April 2015, Pages 254-262

[11] Senthil, P; Enhanced of Image Mining Techniques the Classification Brain Tumor Accuracy (ENCEPHALON),International Journal of Computer Science and Mobile Computation 5 Issue 5 pages 110-115 2016.

[12] Senthil, P.; Medicine Neural Networks Control Mind of Memory in Image Processing (Men-Net-Mind), International Journal of Modern Computer Science (IJMCS) ISSN: 2320-7868 (Online) 4 Volume 4, Issue 2, April, 2016 150-156 2016.

[13] Senthil, P.; Discovery of Image Mining used Brain Tumor using Improve Accuracy and Time (ANGIOGRAPHY),International Journal of Modern Computer Science and Applications (IJMCSA) ISSN: 2321-2632 (Online) 4 Volume No.-4, Issue No.-3, May, 2016 28-33 2016.

[14] Senthil, P.; Image Mining Using Attribute Supported Brain Tumor Synthesis by DWT (MRI Relevance), International Journal of Modern Computer Science and Applications (IJMCSA) 5 Issue No. 3, May, 2016 85-90 2016.

[15] Senthil, P.; Brain Tumors Frequency Image Mining Used Detection Time Technique in Medical Images, International Journal of Modern Electronics and Communication Engineering (IJMECE) 4 Volume No.-4, Issue No.-3, May, 2016 39-45 2016 ISSN: 2321-2152 Volume No.-4, Issue No.-3, May, 2016

[16] Senthil, P.; Image Mining Using Lipomatous Ependymoma on Weighted Image Find Brain Tumor (Allin One), International Journal of Modern Computer Science (IJMCS) 4 6 Pages.12-18 2016

[17] Senthil, P.; Image Mining Automata Based Seeded Tumor C-Taxonomy Algorithm for Segmentation of Brain Tumors on MR Images (BITA), Asian Journal of Computer Science and Technology 4 ISSN: 2249-0701 Vol. 5 No. 1, 2016, pp.1 16-Oct 2016

[18] Senthil, P.; An Improved Gradient Boosted Algorithms Based Solutions Predictive Model (Trade), Asian Journal of Managerial Science 5 ISSN: 2249-6300 Vol. 5 No. 1, 2016, pp.3 30-40 2016.

[19] Senthil, P; Image Mining Brain Tumor Detection using Tad Plane Volume Rendering from MRI (IBITA), Journal of Computer - JoC, Available Online at: www.journal.computer 1 Vol.1 Issue. 1, June- 2016, pg. 1-13 13-Jan 2016

[20] Senthil, P.; ENHANCED BIG DATA CLASSIFICATION SUSHISEN ALGORITHMS TECHNIQUES IN HADOOP CLUSTER (META), Journal of Computer - JoC, Available Online at: www.journal.computer 1 Vol.1 Issue. 1, June- 2016, pg. 14-20 14-2016.

[21] Senthil, P.; IMAGE MINING USED SEGMENTATION TECHNIQUE MRI SCAN BRAIN

TUMOR IMAGES ANALYSIS (IMUSA), Journal of Computer - JoC, Available Online at: www.journal.computer 1 Volume 1 Issue 1

[22] Senthil, P.; IMAGE MINING CLASSIFICATION MRI SCAN USED BRAIN TUMOR ANALYSIS (IMICLA) Journal of Computer - JoC, 1 Volume 1 Issue 1 ISSN:2518-6205 21-35 2016

[23] Senthil, P.; IMAGE MINING EFFECT USING GAUSSIAN SMOOTH IN BRAIN TUMOR INCREASING THE SEGMENTING ACCURACY (I- MENINGIOMA), Journal of Computer - JoC, 2 Vol.1 Issue. 2, July- 2016 pages. 63-73 2016

[24] Senthil, P.; Image Mining Base Level Set Segmentation Stages To Provide An Accurate Brain Tumor Detection International Journal of Engineering Science and Computing, July 2016 6 Volume 6 Issue No. 7 Page.8295-82992016

[25] Senthil, P; Image Mining Brain Tumor Detection using Tad Plane Volume Rendering from MRI (IBITA), Journal of computer science2 Vol.1 Issue. 1, June-2016, pages. 1-13 2016

[26] Senthil, P.; Image Mining Brain Tumor Detection using Tad Plane Volume Rendering from MRI (IBITA), journal of computer 1 Vol.1 Issue. 1, ISSN:2518-6205 Vol.1 Issue. 1, June- 2016, pg. 1-13 2016

[27] Senthil, P.; Image Mining in Fuzzy Model Approaches Based Random walker algorithm Brain Tumor Analysis (Meningioma Analysis), International Journal of Computer Science & Engineering Technology (IJCSET) 7 Vol. 7 No. 07 Jul 2016Pages 303 - 315 2016

[28] Senthil, P.; IMAGE MINING USING DISEASE ACCURACY ANALYSIS (Muda),International Research Journal of Engineering and Technology (IRJET), 3 6-Jun-16 pages. 309-318 2016e-ISSN: 2395 -0056 Volume: 03 Issue: 06 | June-2016

[29] Senthil, P.; EXPOSURE WITH CREDENTIALS OF BRAIN TUMOR USING IMAGE MINING MICCAI PERFORMANCE (MELANOMA), International Journal of Current Research 8 Vol. 8, Issue, 08, Pages 36002-36006, 2016

[30] Senthil, P.; Image Mining in Tumor Detection in Brain using Sushisen in Arima Model Indian Journal Of Natural Sciences 37 1 Pages 11480-11496 2016

[31] Senthil, P; Image Mining Segmentation Adaboost Glioma Prevents Progression to High Grade Glioma Accuracy(Imsaga), International Journal of Engineering Studies and Technical Approach (IJESTA) 2 Volume: 2, No: 9, Sep 20 Pages 1-10 2016

[32] Senthil, P; Templaste and Inasu algorithms using Medical images Analysis, International Journal of Engineering Studies and Technical Approach (IJESTA) 2 Volume: 2, No: 10, Oct 2016 14-Jan 2016.

[33] Senthil, P; Image Mining Inranking Approach under Interval-Valued Hesitant Fuzzy Set Gr Selection International Journal of Scientific Research in Computer Science, Engineering and Information Technology, Volume 1, Issue 2 Page 105-114 2016.

[34] Senthil, P; Cancer Detection Cancer and Classification Radiotherapy Treatment, International Journal of Engineering Studies and Technical Approach (IJESTA) 2 Volume: 2, No: 12, Dec 2016 11-Jan 2017.

[35] Senthil, P; ECG Signals Application Automated Apprehension and Allocation of Cardiovascular Abnormalities, Asian Journal of Electrical Sciences (AJES) Volume 5 No.2 July-December 2016 pp 28-32 2017.

[36] Senthil, P; Evolutionary Algorithms Techniques Based on MET Heuristics of Accustomed Computing Performance, Asian Journal of Computer Science and Technology 6 issue. 1 2017, pp.21-26 2017.

[37] Senthil, P; Inheritance Classification Based Artificial Reproduction Analysis and Artificial Neural Networks (Icarus), Asian Journal of Computer Science and Technology 6 No. 1, 2017, pp.6-14 2017.

[38] P, senthil; FOURIER TRANSFORM BASED CLASSIFICATION ABORIGINAL ALGORITHM, Asian Journal of Science and Applied Technology (AJSAT)6 Volume 6 No.1 January-June 2017 page 5-9 2017.

[39] P, senthil; Graphics in Combination Handguns Preparation Classification (Gaps), Asian Journal of Engineering and Applied Technology (AJEAT) 6 Volume 6 No.1 January-June 2017 Page 1-9 2017..

BIOGRAPHIES

P.Senthil was born Varagubady or varagupadi (village) in Perambalur Dist in Tamilnadu in India in 9 May 1987. He received his B.Sc., degree in Information Technology from Bharathiyyar University for coimbatore, Tamilnadu. He was received the M.Sc Information Technology and M.Phil degrees in Computer Science from Kurinji College Arts and Science, Trichy, Tamilnadu in 2010, and 2014, respectively. In 2012, He joined in the Department of Computer Science, Kurinji College of Arts and Science in Trichy, Tamilnadu as a Lecturer and now He is working as Associate professor in the department of MCA, KCAS College of Arts and Science, Trichy Tamilnadu from June 2014 onwards. He is doing his research in Image mining & Digital Image processing at Bharathidasan University, Tamil nadu in India. He is the examination board member of various Colleges and Universities and He guided more than 6 MPhil Research scholars for various universities.