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Abstract: Data mining methods have the potential to identify groups at high risk. There are different steps of
processing the data so as to extract their results consisting of data collection, data pre-processing, feature
extraction, data partitioning, and data classification. There are different classification techniques like a
classification tree, averaging tree, and machine learning algorithms. This paper explains the proposed model for
cell survival/ death by using Random forest and boosting tree and random forest methods which are different
Averaging tree techniques. The data is collected which is pre-processed by visual plots (basic statistics) and
normality test (AD, KS and chi-square values). The marker proteins were selected from eleven different proteins
by using statistical analysis (SER, p-value, and t-value). Lastly, averaging tree technique is applied to the data set
to predict which protein or sample helps in cell survival/ death. In boosting tree, the division is on the basis of ten
different concentrations of TNF, EGF, and Insulin while in RF method, the model is made for the training and
testing of data on the basis of samples. 100-0-500 ng/ml yields the better results using boosting tree and from RF
methods we come across that FKHR protein leads to cell death while rest proteins help in cell survival if they are

present.
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I. INTRODUCTION

Data mining methods can be helpful in identifying
covariates related to adverse events. Predictive
modeling and data mining have the potential to identify
groups at high risk. The regulatory impact of predictive
modeling is not clear at this time. A huge amount of
web searches are daily created through search engines.
Social media and communities have become
increasingly important data. The health industry and
medical field generate bytes of data from patient
monitoring, medical record and medical imaging.
Global telecommunication networks create tremendous
data traffic every day. This triggered the idea of
combining benefits and advantages of reality mining,
machine learning and Big Data predictive analytics
tools, applied to sensors real time. The development of
effective predictive and perspective analytics systems
relies on the use of advanced and preformed
technologies such as Big Data, advanced analytics tools
and intelligent systems.

In this paper, we are working with marker proteins [1-
3] which occur due to the combination of TNF [4-5],
EGF [6-8] and insulin [9-11]. In general, there are two

types of data consisting of continuous and categorical.
For the categorical method, we usually use machine
learning algorithms while for continuous data,
classification trees / Single regression trees and
Averaging Trees/ decision trees method is considered.
Logistic regression (LoR) is one which is applied for
continuous and categorical data both. It usually uses
maximum  likelihood  estimation (MLE) after
transforming the dependent variable into a log it
variable and gives a better result for large data set in
spite of small data sets. This type of regression neither
requires normally distributed variables nor does it
assume a linear relationship between the dependent and
independent variables.

This paper presents the proposed model for cell
survival/ death by using Random forest and boosting
tree and random forest methods which are different
Averaging tree techniques. The data is collected which
is pre-processed by normality test and visual plots. The
marker proteins like AKT [12, 13], ERK, JNK, MK2
[14], EGFR, IRS and FKHR [13] were selected from
eleven different proteins by using statistical analysis.
Lastly, averaging tree technique is applied to the data
set to predict which protein or sample helps in cell
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survival/ death. In boosting tree, the division is on the
basis of ten different concentrations of TNF, EGF, and
Insulin while in RF method, the model is made for the
training and testing of data on the basis of samples.

The organization of the paper is as: Section 2 explains
the dataset used for the simulations and explains the
proposed model, Section 3 explains the experimental
and simulation results of the proposed model which is
followed by the conclusion and future work.

Il. MATERIALS AND METHODS

There are various steps for processing the data which
helps in extracting the results from input data/ images:

2.1 Materials:

The data was collected from the heat map taken from
[3] for the HT carcinoma cells which help in cell
survival/ death. In this paper we have considered the
three input proteins (TNF, EGF and Insulin) and four
different outputs which results in different proteins
consisting ptAKT, IKK, MK2, AKT, JNK, MEK, ERK,
IRS, FKHR, pAKT, and EGFR. We can also say that if
these proteins are absent or electronically zero (0) then
it leads to cell death but if these proteins are present or
electronically one (1) then there is cell survival. We
have collected the data for all marker proteins for ten
different concentrations of input proteins (in ng/ml).
All the simulations were carried out in Statistical and
SPSS software.

2.2 Proposed Methodology:
This paper proposes a model using different averaging
tree techniques that help in diagnosis of cell survival/
death for HT carcinoma cells using three different
inputs with ten different combinations. Fig 1 explains
the steps followed for the proposed model.

Preprocessing
¥
Normality Tests Vigual Tests
K3, Chi-squate, AD walues using a. Boxplot
Fregquency arud Cumulative b, Q-0 plot
distribation ¢. P-F plot
y A
Statistical Analysis
a ANOWA
b. ftest
Averaging Trees

Figure 1: Proposed model for cell death/ survival
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2.2.1 Data Pre-processing:
In pre-processing main steps
integration, data reduction, data cleaning,
discretization, and data transformation.

consisting  data
data

1.Data cleaning involves the identifying or
removal of outliers, smoothening of noisy data, or
filling the missing values, etc. Noisy data can be
solved by different ways consisting of binning
methods, clustering and regression. In clustering;
we can detect and remove outliers while for
Regression; smoothening of data is done by fitting
into regression function. Binning method consists
of two types of partitioning: equal depth/
frequency partitioning where the range is divided
into N intervals with the same number of samples.
Through this method, we obtain good data scaling.
Categorical attributes managing is a little bit tricky
in this partitioning. This type of partitioning does
not handle skewed data. Second is Equal
width/distance partitioning where the range is
divided into N equal size intervals. If we have A
and B as the lowest and highest value of feature
than the width of the interval is expressed by Eq.

1)
W = (B-A) /N 1)
2.Data Integration:

This includes removing redundant or duplicates
data. Detecting and resolving data which involve
conflicts. Chi-square test is done for calculating
correlation or covariance values. If the data is is
continuous than regression analysis is performed
and if it is categorical than chi-square test is
applied.

3.Data Transformation:

This step involves normalization, smoothening and
aggregation of data. Normalization is of different
types  consisting min-max  approach, z-
normalization, normalization by decimal scaling.
Smoothening means to remove the noise from the
data while aggregation as the name suggests to
summarize or to aggregate the data.

4, Data Reduction:

It means to remove unimportant attributes. It
consists of data reduction strategies, regression
and log linear model, aggregation and clustering,
sampling, data compression, and histograms. Data
reduction strategies consist of data compression,
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numerosity reduction, data cube aggregation, and
dimensionality reduction. In  dimensionality
reduction, there are two step feature selection and
heuristic methods. Feature selection is of two
types first is direct method in which selection of a
minimum set of feature (attribute) is done which is
sufficient for data mining while second is indirect
method consists of principal component analysis
(PCA), singular value decomposition (SVD),
independent component analysis (ICA). The
heuristic method involves stepwise forward
selection, backward elimination and both.

5.Data Discretization:

In this type division of range for the continuous
features was done into intervals because some data
mining algorithms only accept categorical
attributes. This can be done by binning method or
entropy-based method. The discretization of
numeric/ categorical data can be done by binning
method, histogram analysis or clustering analysis.

2.2.2 Feature Selection and Feature extraction:
After pre-processing, feature extraction is applied using
any of the technique consisting of Morphological and
Texture [15-17]. Morphological methods help in
calculating the shape based properties. Texture Method
(TM) is subdivided into three sub different methods as
Signal Processing (SP) which calculates law mask
features, Transform Domain (TD) calculates wavelet
packet transform (WPT), FPS and Gabor Wavelet
transform (GWT), and Statistical feature (SF)
calculates different gray level matrixes [18-19].

2.2.3 Data Partitioning:

For validation of data it is divided into two parts one is
known as testing while another is known as training.
Data partitioning is done by different methods as hold
out, stratified sampling, boot-strap, resampling or
three-way data splits. In general hold out approach is
used in which we can divide the dataset into % to the
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Y ratio where % for training and % for testing. Hold out

can be single hold out or repeated holdout. Cross-

validation (CV) can also be done by using k- fold CV

or leave one out CV. Fork- fold CV, we can train k-1

partitioned data while rest dataset is used for testing. In
leave one out CV we can train k = n data.

2.2.4 Data Classification:

There are different algorithms through which we can
classify the data. Basically, we have three algorithms
consisting of Classification trees / Single regression
trees, Averaging Trees/ Decision Trees and Machine
learning algorithms. The Classification trees / Single
regression trees are subdivided as Classification and
Regression Trees (CRT models, CART, CHI),
Interactive C&RT algorithm (ICR), Interactive
Exhaustive CHAID algorithm (IEC)and Chi-squared
and Interactive Decision (CHAID). The Averaging
Trees/ Decision Trees consisting Bagging Trees (BT)
known as Averaging Trees, Random Forests (RF)
known as Cleverer Averaging of Trees and Boosting
Trees (BOT) known as Cleverest Averaging of Trees.
The different Machine learning algorithms are kNN,
Artificial Neural Networks (ANN) [18] and Support
Vector Machines (SVM) [19].

I11.  RESULTS AND DISCUSSIONS

Initially data is collected from the heat map taken from
[3] which consists of eleven different proteins for ten
different combinations (0-0-0, 5-0-0, 100-0-0, 0-100-0,
5-1-0, 100-1000-0, 0-0-500, 0.2-0-1, 5-0-5, 100-0-500
in ng/ml) of three inputs. Data pre-processing is done
to remove the outliers by using box plot, p-plot, Q-Q
plot (basic statistics) and we have normalised the data
set which is checked by calculating the Anderson
darling, Kaplan Smirnov and chi-square values as a
normality test. Fig 2 shows one of the basic statistics
plot and Table 1 tabulates the normality tests vales.
Likewise, we have calculated for all the eleven
proteins. But due to the constraint of space of we are
only showing results for one protein.
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Figure 2: Different static summary, box plot and P-P plot

Table 1: Normality tests using KS, AD, and Chi-square

K-Sd | K-S | AD Stat | AD Chi-sq | Chi-sq | Chi-sq
p-value p-value | df

Gaussian Mixture 0.03 098 |0.15 1.00 6.07 0.11 3
Normal (location, scale) 0.18 0.00 | 18.50 0.00 193.53 | 0.00 7
Log Normal (scale, shape) 0.21 0.00 | 25.51 0.00 232.73 | 0.00 6
Half Normal (scale) 0.23 0.00 | 22.62 0.00 266.73 | 0.00 7
Rayleigh (scale) 0.24 0.00 |23.26 0.00 279.47 | 0.00 7
Weibull (scale, shape) 0.57 0.00 |117.27 | 0.00 1424.27 | 0.00 8
General Pareto  (scale,

shape) 0.64 0.00 |144.16 | 0.00 1907.27 | 0.00 8
Triangular(min, max,

mode) 0.87 0.00 |532.70 |0.00 1555.27 | 0.00 7

Table 2: Regression analysis in terms of standard error coefficients, p-value, t-value and VIF for FKHR

Effect Coefficient SER t-value | p- value | VIF
Constant 0.55687 0.03119 17.85 | 0.000
0-0-0 0.00017162 | 0.00008008 | 2.14 0.033 | 69.0
5-0-0 0.00005418 | 0.00005264 | 1.03 0.304 55
100-0-0 | -0.00008349 | 0.00002848 | -2.93 0.004 | 1315
0-100-0 | 0.00000983 | 0.00004522 | 0.22 0.828 6.8
5-1-0 0.00003322 | 0.00006344 | 0.52 0.601 | 25.1
100-100-0 | -0.00012455 | 0.00004550 | -2.74 0.007 | 29.2
0-0-500 | -0.00003052 | 0.00005163 | -0.59 0.555 7.1
0.2-0-1 | -0.00017282 | 0.00005713 | -3.03 0.003 | 1433
5-0-5 0.00006400 | 0.00005365 | 1.19 0.234 | 985
100-0-500 | -0.00016003 | 0.00004820 | -3.32 0.001 | 118.9
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A statistical test is applied to get the best proteins which detect cell survival/ death. Out of eleven proteins, seven
proteins (AKT, MK2, JNK, ERK, EGFR, IRS and FKHR) found the better for further analysis.
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Standard Error Coefficients (SER) is used to measure
precision. The smaller the value the more precise is the
estimate. If SER is divided by coefficient values, than
we obtain the t-value. Table 2 shows the Standard
Error Coefficient (SER), t-value, p-value and variance
inflation factor (VIF) for FKHR.

Lastly, different approaches of averaging/decision trees
are applied to get which protein helps in cell survival/
death. In the paper, we are using boosted trees and
random forest for modeling our system. In Boosted
trees, we compute a sequence of simple trees, where
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each successive tree is built for the prediction residuals
of the preceding tree. This method is used to build
binary trees, means the partition of the data into two
samples at each split node. Fig 3 shows the boosted
trees of AKT for 6 nonterminal and 7 terminal nodes,
Fig 4 to Fig 6 shows the boosted trees of ERK, JNK,
and MK2 respectively for 7 nonterminal and 8 terminal
nodes. Fig 7 and Fig 8 shows the boosted trees of
EGFR, and IRS respectively for 7 nonterminal and 8
terminal nodes. Each figure is showing the mu and var
value of each division.
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Figure 3: Boosted tree graph for AKT
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Figure 4: Boosted tree graph for ERK
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Figure 6: Boosted tree graph for MK2
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Figure 8: Boosted tree graph for IRS

Random Forest (RF) is a refinement of bagging tree
method. In the RF method, m feature was extracted if
we have p number of total features or we can say m
=\p or log, p. RF method improves the bagging tree by
de-correlating the trees and have the same expectation.
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Fig 9 shows the RF for marker proteins. Each figure
shows the average squared error v/s no of trees (300)

for training and testing data of 300 maximum tree
sizes.
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Figure 9: Random Forest Trees of different proteins (a) AKT, (b) EGFR, (c) ERK, (d) JNK, (e) MK2 and (f) IRS

From the different averaging trees we conclude that
boosting tree method is applied to the different
combinations of the three inputs while the random
forest is applied to the samples (300). From both the
methods we come across that FKHR protein mainly
leads to cell death while rest proteins help in cell
survival if they are present.

The results were validated by calculating the error
function shown in Table 3. There are different types of
error functions like mean sq error (MSE), mean abs
error (MAE), root mean sq error (RMSE), rand relative
sq error (RSE), which was tested by using like partial
least square (PLS), k nearest neighbours (KNN), and
random forest.
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Table 3: Various error function for FKHR

MAE MSE RMSE RSE
PLS 0.0047 0.0000 0.0059 0.0797
KNN 0.0057 0.0000 0.0069 0.1090
Random 0.0054 0.0000 0.0067 0.1021
Forest

IV. CONCLUSION

This paper presents the proposed model for cell
survival/ death by using Random forest and boosting
tree and random forest methods which are different
Averaging tree techniques. The data is collected which
is pre-processed by normality test and visual plots. The
marker proteins were selected from eleven different
proteins by using statistical analysis. Lastly, averaging
tree technique is applied to the data set to predict which
protein or sample helps in cell survival/ death. In
boosting tree, the division is on the basis of ten
different concentrations of TNF, EGF, and Insulin
while in RF method, the model is made for the training
and testing of data on the basis of samples. 100-0-500
ng/ml yields the better results using boosting tree and
from RF methods we come across that FKHR protein
leads to cell death while rest proteins help in cell
survival if they are present. In the future, deep learning
algorithms can be applied on the dataset.
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