

A smart placement optimized sink mechanism for wireless sensor networks

¹Raveena Soni, ²Prof. (Dr.) GN Verma, ³Sukhjinder Kaur

¹Mtech Scholar,

ECE Dept, SSIET (PTU), Derabassi, Punjab

²Principal (Co-Supervisor),

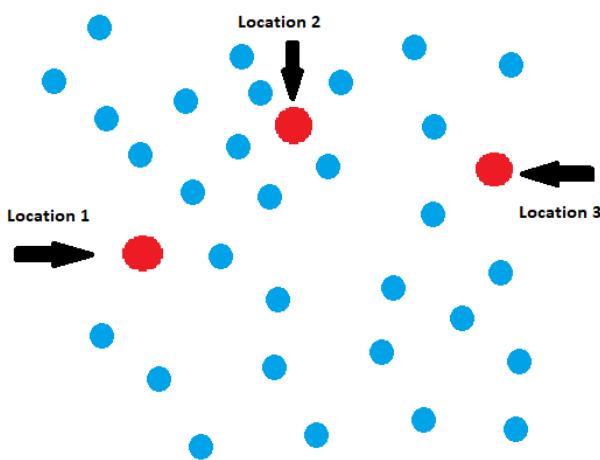
SSIET (PTU), Derabassi, Punjab

³Assistant Professor,

ECE Dept, SSIET (PTU), Derabassi, Punjab

¹raveenasoni10@gmail.com, ²drvermagn@gmail.com, ³sukhjinder.253@gmail.com

Abstract: Energy utilization in the wireless sensor networks is an important factor in the success of the network. Since the nodes are wirelesses the energy conservation makes a huge difference in the lifetime and overall quality of service of the network. The work sees the government of the broadcasting of the location change information while the mobile sink is making movements in the network. The problem of broadcasting every time the node moves in the new grid was seen to be using more than required energy for the management of data flow so the improvement for this issue is being proposed. The previous POS mechanism is improved and replaced with the SPOS which is smart POS which improves the POS's energy utilization and hence the network lifetime. Simulations have shown considerable improvement in the above parameters.


Keywords: POS, SPOS, network lifetime, Energy consumption.

I. INTRODUCTION

Late advances in remote correspondences and miniaturized scale electro-mechanical framework (MEMS) innovations have empowered the improvement of ease, low-power and little size remote sensor hubs [1]. Remote sensor systems (WSNs) have turned into the flow problem area of systems administration region and have been utilized for different applications, for example, maritime asset investigation, contamination observing, tidal wave alerts and mine surveillance. For every one of these applications, it is fundamental to know the areas of the information [2]. Numerous ways to deal with get this per-hub area learning have been investigated. In light of the sort of information utilized in restriction, we can isolate these confinement conventions into two classifications: go based and extend free [3]. Range-based conventions gauge supreme point-to-direct separation toward ascertain the area between neighboring sensors. The second classes of techniques, named extend free methodology, utilize network or different highlights to discover the associations from the non-stay hubs to the grapple hubs [4]. Range-put together calculations are normally based with respect to

point of-entry (AOA), RSSI [5], time-of-landing (TOA) or time-distinction of-landing (TDOA) estimations [6]. A promising innovation is the ultra wideband (UWB) innovation where exact going can be inserted into information correspondence. The commonplace range free restriction calculations incorporate DV-Hop [7], Centroid calculation [8], APIT [9] and Amorphous [10]. In any case, the execution of sans range calculations isn't high. At the point when the sensor organizes is anisotropic or has complex topology, the execution of these techniques additionally will in general crumble. Since the area precision of the range-based methodology is generally higher than that of without range calculations, we center around the investigation of range-based arrangements and their applications in WSNs in this paper. Gotten flag quality is nearly a lot less demanding and less expensive to acquire from the time arrangement accounts at every sensor. Be that as it may, the exactness for the RSSI-based calculation isn't high. It is our conclusion that the TOA based limitation can assume a functioning job in a few WSNs applications gave that the exactness prerequisite as far as spatial goals is strict. In that capacity, we propose two TOA based restriction calculations and assess them when connected to versatility helped remote sensor

systems. In contrast to the static sensors, which are firmly obliged by the vitality supplies, versatile stay's batteries are battery-powered.

Figure 1: Mobile sink locations in a WSN

Proficient coordinated effort between portable stay (MA) and static sensors can likewise successfully change grapple densities on interest, conceivably lessening the quantity of grapples required contrasting with all-static system arrangements. Moreover, portable stays can participate with the static sensors to settle the impediment of hub restriction in the static sensor systems. In this paper, versatile grapple hub meanders through the system and communicates reference point messages with its situation to obscure position hubs occasionally at different areas. In view of the dynamic development of versatile stay, confinement execution is enhanced altogether. This paper makes the accompanying two fundamental commitments. Initial, two past confinement calculations dependent on the zone and volume are summed up to permit any number of MA reference point focuses, which were enlivened by the region strategy utilized in [11] and the volume technique used in [12], individually. Second, two alluring development methodologies for MA are proposed to diminish the aggregate moving separation and enhance moving proficiency of MA while fulfilling the normal area execution, which can proficiently broaden the lifetime of the MA and advance the grapple dissemination.

II. RELATED WORK

In [1] it was informed that versatile sensors need to move forward and backward in the observing territory. Its vitality utilization is huge, and the vitality is hard to renew. Along these lines, it turns into a hotspot on sparing vitality and drawing out the existence cycle of the system. In this paper, we isolate the sensor arrange into a few autonomous networks, and build up a lattice based limitation methodology for portable sink hubs.

At the point when the sink hub moves inside a solitary framework, the area refresh process will be restricted to this lattice; when the sink hub moves out of a front matrix, the merging hub just need to communicate its new lattice number in the system because of lattice based system structure. At that point, the ideal situation system of vitality is built through direct enhancement show.

Another examination [2] Adding a couple of portable hubs into the ordinary remote sensor systems can significantly enhance the detecting and control abilities of the systems and can enable scientists to settle numerous difficulties, for example, organize sending and fix. This paper presents improved hub engineering for adding controlled portability to remote sensor systems. The auxiliary model, the power show and the systems administration model of the proposed versatile hub have been constructed individually for better hub control. What's more, it gives a novel mechanical stage to trial explore in crossover sensor systems or other conveyed estimation and control frameworks. A proving ground has at long last been made for approving the fundamental elements of the proposed versatile sensor hub. The consequences of an inclusion explore demonstrate that the portable hub can give extra help to organize inclusion and can guarantee that the sensor system will work appropriately in unwanted conditions.

In [3] remote Sensor Networks (WSNs) are accumulation of little sensor hubs equipped for detecting, preparing and broadcasting information associated to some event in the system region. The sensor hubs have serious restriction, for example, transfer speed, short correspondence run, constrained CPU handling office, memory and vitality. Upgrading the lifetime of remote sensors organize and productive uses of transfer speed are basic for the expansion of remote sensor arrange in various applications. In the writing, different vitality effective directing calculations have been expressed so as to improve arrange lifetime. In this paper, announced the conditions for proficient utilization of vitality utilizing insect state improvement system. The execution of the inclination based directing convention and vitality mindful steering convention have been dissected and contrasted with figure the vitality use for the sensor organize zone. Results demonstrate vitality mindful directing with subterranean insect settlement streamlining gives more doable steering arrangements in source hub to sink hub and give huge improvement on the lifetime of the sensor organize.

In [4] remote sensor systems (WSNs) have been proposed for a huge number of area subordinate applications. To stamp the gathered information and encourage correspondence conventions, it is important to distinguish the area of every sensor. In this paper, we examine the execution of two novel situating plans,

which utilize two summed up geometrical confinement calculations to accomplish a precise estimation dependent on time-of arrival (TOA) estimations without time synchronization. So as to enhance the system execution what's more, address the restrictions of static WSNs on position estimation, a portable stay is used adequately what's more, two alluring development techniques for versatile grapple are planned as needs be. The adequacy of our methodologies is approved and contrasted and the customary Trilateration strategy by broad reenactments.

In [5] this paper portrays the idea of sensor systems which has been made feasible by the combination of miniaturized scale electromechanical frameworks innovation, remote interchanges and advanced gadgets. To start with, the detecting errands and the potential sensor systems applications are investigated, and an audit of variables affecting the structure of sensor systems is given. At that point, the correspondence engineering for sensor systems is plot, and the calculations and conventions produced for each layer in the writing are investigated. Open research issues for the acknowledgment of sensor systems are additionally examined.

In [6] shows the upsides of utilizing controlled portability in remote sensor systems (WSNs) for expanding their lifetime, i.e., the timeframe the system can give its proposed functionalities. All the more explicitly, for WSNs that involve an expansive number of statically set sensor hubs transmitting information to a gathering point (the sink), we demonstrate that by controlling the sink developments we can acquire momentous lifetime upgrades. So as to decide sink developments, we initially characterize a Mixed Integer Linear Programming (MILP) investigative model whose arrangement decides those sink courses that expand organize lifetime. Our commitment extends further by characterizing the principal heuristics for controlled sink developments that are completely disseminated and restricted. Our Greedy Maximum Residual Energy (GMRE) heuristic moves the sink from its present area to another site as though drawn toward the region where hubs have the most noteworthy lingering vitality. We likewise present a straightforward dispersed versatility plot (Random Movement or RM) as per which the sink moves uncontrolled and haphazardly all through the system. The distinctive versatility plans are looked at through broad ns2-based reproductions in systems with various hubs sending, information directing conventions, and limitations on the sink developments. In every single thought about situation, we see that moving the sink dependably expands arrange lifetime. Specifically, our tests demonstrate that controlling the portability of the sink prompts noteworthy upgrades, which are as high as six overlap contrasted with having the sink statically (and ideally) put, and as high as twofold contrasted with uncontrolled versatility.

III. PROPOSED WORK AND METHODOLOGY

In the POS work authors have proposed a placement optimized sink (POS) node mechanism. In it the moving sink node uses the energy in a much optimized way by following two basic rules. Firstly, it only relays information of movement within the grid to only the grid members in which it is present. Secondly, it broadcast the information of new grid number to all the grids. So it saves crucial energy by not broadcasting the new grid movement signal to the entire grid if it moving within the grid. But the problem with the mechanism is when it moves out of the grid it broadcasts the information of new grid number to the entire grid once which causes a lot of energy wastage. But the proposed SPOS only give out the grid change movement message to the neighboring eight grids therefore avoiding universal broadcast of the message to save a lot of energy.

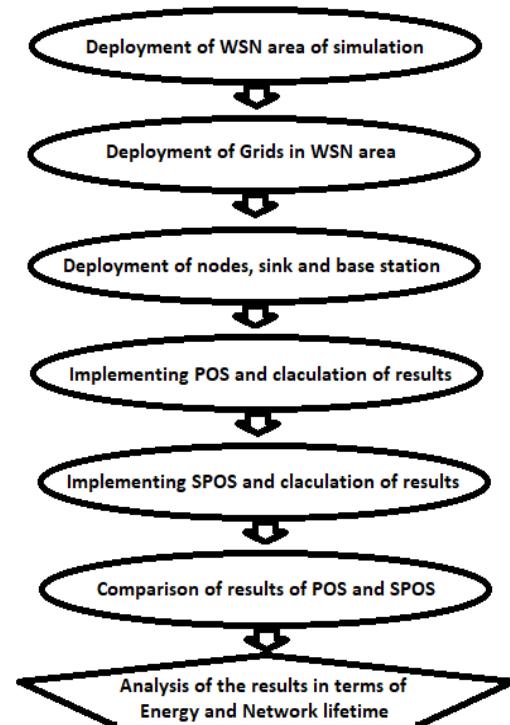
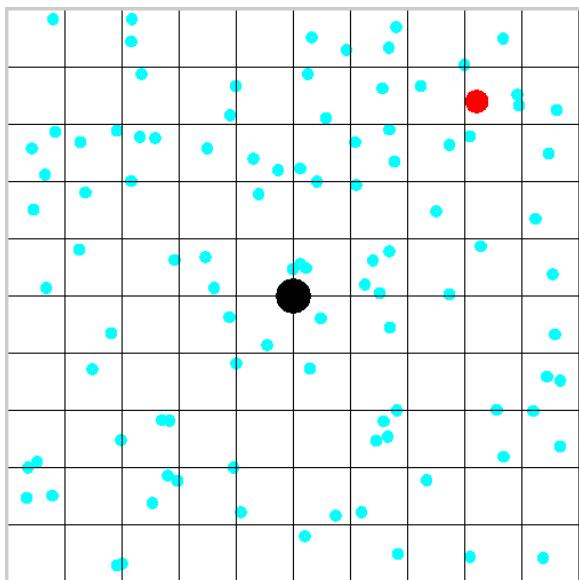


Figure 2: Proposed methodology

Steps of methodology as shown in figure 2

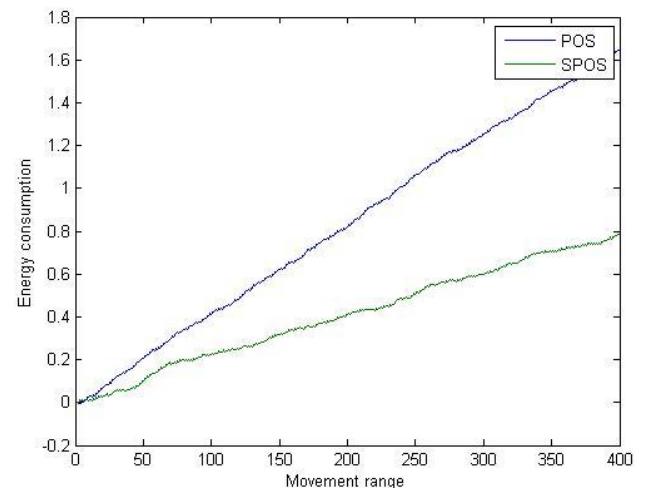
1. The network area is deployed which consist of the plane of 1000 X 1000 dimension in which all the simulations are going to take place.
2. Deployment of grids which are of 100 X 100 dimensions in all 100 of them.
3. Deployment of wireless sensor nodes, base station which is the wired end bus of the network and sink which mobile wireless end bus of the network.

4. Implementing the base work of POS i.e. placement optimized sink in MATLAB.
5. Implementing the base work of SPOS i.e. smart placement optimized sink in MATLAB.
6. Plot making of the results values of POS and SPOS.
7. Analysis and conclusive discussion of the POS and SPOS in terms of energy consumption and the network lifetime.

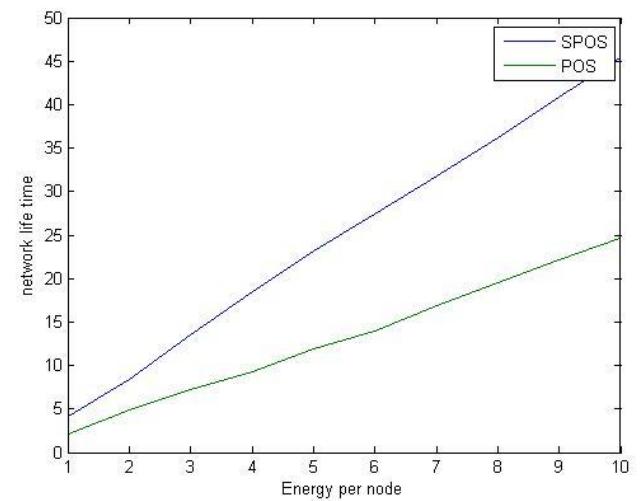

IV. RESULTS AND SIMULATION STEP

All the simulations were done in MATLAB 2013a. The network parameters and other parameters are defined in the following table as shown in table 1.

Table 1: Network parameters


Parameter	Value
Network area	1000 X 1000
Nodes	100
Initial energy	4 mJ
Base stations	1
Mobiles sinks	1

With the above said parameter the mobile sink simulations were done in the simulator environment as shown in figure 3.


Figure 3: The simulation environment

The results for energy and the network lifetime are calculated as shown in figure 4 and 5.

Figure 4: Plot of Energy consumption and Movement range

The above plot shown that the SPOS performs better than POS in terms of Energy consumption because of the less broadcasting of the message of the movement in the network it has to do while collecting data.

Figure 5: Plot of Network lifetime and energy per node

The above plot shown that the SPOS performs better than POS in terms of Energy consumption because of the less broadcasting of the message of the movement in the network it has to do while collecting data.

V. CONCLUSION

We have studied and simulated the POS mechanism in MATLAB. The problem of universal broad casting has been studied and addresses. We in our work are improving the POS mechanism into smart POS or SPOS mechanism in which when the node moves out the grid it only relays the message to the grid size range area nodes i.e. only to nodes which are in the neighbouring nodes of neighbouring eight grids as one grid is surrounded by eight grids. This is how it saves energy by only broad casting the message to the entire neighbouring eight grids instead of all the hundred

grids. We have simulated the scenarios of POS and SPOS and found that SPOS performs better in terms of Energy consumption and Network lifetime in comparison to POS.

References

- [1] Chen, H., Liu, B., Huang, P., Liang, J. and Gu, Y., 2012. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks. *Mobile Networks and Applications*, 17(1), pp.90-99.
- [2] Song, G., Zhou, Y., Wei, Z. and Song, A., 2008. A smart node architecture for adding mobility to wireless sensor networks. *Sensors and Actuators A: Physical*, 147(1), pp.216-221.
- [3] Koç, M. and Korpeoglu, I., 2014. Controlled sink mobility algorithms for wireless sensor networks. *International Journal of Distributed Sensor Networks*, 10(4), p.167508.
- [4] Arya, R. and Sharma, S.C., 2015. Analysis and optimization of energy of sensor node using ACO in wireless sensor network. *Procedia Computer Science*, 45, pp.681-686.
- [5] Kong, P., Ma, J., Xia, Q. and Zhang, Y., 2018, August. Energy Optimized Node Mobility Optimization Strategy for Wireless Sensor Networks. In *2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)* (pp. 519-523). IEEE.
- [6] Song, G., Zhou, Y., Wei, Z. and Song, A., 2008. A smart node architecture for adding mobility to wireless sensor networks. *Sensors and Actuators A: Physical*, 147(1), pp.216-221.
- [7] Arya, R. and Sharma, S.C., 2015. Analysis and optimization of energy of sensor node using ACO in wireless sensor network. *Procedia Computer Science*, 45, pp.681-686.
- [8] Chen, H., Liu, B., Huang, P., Liang, J. and Gu, Y., 2012. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks. *Mobile Networks and Applications*, 17(1), pp.90-99.
- [9] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y. and Cayirci, E., 2002. Wireless sensor networks: a survey. *Computer networks*, 38(4), pp.393-422.
- [10] Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C. and Wang, Z.M., 2008. Controlled sink mobility for prolonging wireless sensor networks lifetime. *Wireless Networks*, 14(6), pp.831-858.