

Enhanced Communication and Data Exchange in Healthcare: The Power of API-Led Integration

¹Wasim Fathima Shah

¹Wellmark- Blue Cross Blue Shield

¹wasimfathima786@gmail.com

Abstract: *Interoperability stands as a significant challenge for the healthcare industry in the digital era. Electronic health records (EHRs) encompassing vital patient information such as medical history, lab tests, demographics, medications, allergies, immunization records, radiology images, and vital signs are confined within isolated databases, incompatible systems, and proprietary software. This predicament poses substantial barriers to data exchange, analysis, and interpretation. Recognizing the need for improved access, analysis, and communication between healthcare systems, medical devices, and applications at both local and cross-organizational levels, the healthcare sector seeks a solution.*

Application Programming Interface (API) integration has emerged as the preferred method to facilitate data flow between internal applications, EHRs, and other data exchange tools within the healthcare industry. APIs enable a secure and seamless exchange of data and functionalities, making them a vital component in managing the data exchange process. This paper emphasizes the indispensability of interoperability for future medical advancements. APIs are the most useful tool among many developing technologies, such as IoT, SaaS, and cloud computing, for maximizing performance, boosting revenue, and bettering consumer comprehension. The paper highlights the advantages of APIs and proposes an API-led integration framework to enhance the interoperability of patient health information among healthcare organizations while ensuring data privacy and security.

Keywords: Interoperability, Healthcare industry, electronic health records (EHRs), Data exchange, Application Programming Interface (API), Future medical advancements, Internet of Things (IoT), API-led integration framework, Data privacy, Data security.

I. INTRODUCTION

Significant progress has been made in the healthcare sector to enhance data interoperability, also known as "data liquidity." However, work must be done to achieve a fully interoperable system. Recently, the focus has shifted from data collection to generating knowledge, drawing conclusions, and acting. The volume of data collected in the healthcare industry has grown exponentially, leading to a surge in stored electronic health records (EHRs) over the past decade. EHRs no longer serve only as repositories for basic patient information and administrative tasks; they now contain a wide range of data, including medical history, laboratory results, demographics, medication and allergies, immunization status, and radiology images. Currently, individual healthcare providers and institutions are the custodians of this vast amount of data, which is stored in databases with limited utilization. The significance of interoperability in maximizing the benefits of digitalization in healthcare and medicine is evident in this research. However,

there is still an awareness gap among healthcare professionals regarding its importance. An API marketplace can serve as a platform to share and access these data points, improving industry efficiency and fostering innovation in population health technology. APIs play a crucial role by providing a documented protocol for communication between computers or applications, ensuring secure and seamless data transfer. Although there have been recent cases of healthcare data theft, APIs can contribute to privacy and security by allowing patients or their representatives to request the transfer of their health information to specified third-party applications. Previous integration methods, such as point-to-point connections, had drawbacks that can be addressed by adopting a layered framework. The proposed framework, functioning as an Accelerator for Healthcare, includes pre-built APIs, integration templates, and best practices to simplify complex integration requirements and expedite critical healthcare projects. To achieve seamless and on-demand information exchange, it is essential to work

with data standards that support health data interoperability.

The paper is organized into various sections. Section 2 explores the paradigms of healthcare decision-making, while Section 3 highlights the power of interoperability in healthcare. The role of APIs is discussed in Section 4, followed by an illustration of API integration using MuleSoft in Section 5. The paper also includes a performance evaluation section and concludes with an overview of the current trends in the medicine industry and user awareness.

II. INTEROPERABILITY IN HEALTHCARE: MOVING TOWARDS OUTCOME-BASED HEALTHCARE (OBH)

Data interoperability is an essential requirement for healthcare organizations (HCOs) as they embark on their digitalization journey. It not only improves availability, efficiency, and reliability but also enhances communication within the medical sector. The healthcare industry faces challenges such as inefficiencies, errors, bureaucracy, and high administrative costs. The shift from focusing solely on data to making informed decisions is evident in the current paradigm of the healthcare industry. This shift can be further explored in the following subsections.

2.1. Outcome-Based Healthcare (OBH)

Enabling smooth and unrestricted data sharing not only helps healthcare organizations operate more efficiently but also directly benefits patients by promoting outcome-based healthcare. Outcome-based healthcare is a novel healthcare model in which all service providers, including hospitals and doctors, are remunerated based on patient outcomes rather than the quantity of healthcare services delivered. Under value-based care agreements, providers are incentivized to help patients improve their health, reduce the impact and occurrence of chronic diseases, and live healthier lives based on evidence-based practices. This model emphasizes a team approach that begins with the sharing of patient data to facilitate coordinated care and enable easy measurement of outcomes. However, many patients express concerns about the lack of data sharing among different care providers, with faxes and phone calls still serving as the primary means of information exchange. To address this issue, interoperability rules were introduced in 2020 with the goal of facilitating seamless data transmission in the medical domain. Interoperability, at its core, reflects the healthcare industry's need to coordinate care for patients across an expanding network of stakeholders more effectively than the current capabilities allow.

2.2. The Need for Interoperability

A true electronic health record (EHR) system should be able to seamlessly share data with supporting entities such as fitness trackers, patient apps, hospital systems, pharmacy software, and laboratory tools [4]. In today's world, any relevant party should be able to access the corresponding files instantly via smartphones. It has been established that the quality and availability of data play a crucial role in establishing a transparent, patient-centric healthcare industry [1,5]. The focus has shifted from merely collecting massive amounts of data to understanding and utilizing it effectively, leveraging EHRs to transform data into knowledge, conclusions, and actionable insights [5]. Previously, EHRs were not designed to predict disease risks or progressions or determine the most appropriate treatments. However, by empowering them with APIs, this becomes feasible [7]. One of the major obstacles is the heterogeneity of data, which originates from various sources in different formats, including structured, semi-structured, and unstructured data, lacking a unified formatting standard. Different HCOs utilize different software and systems, running various programs, operating systems, computing languages, and network configurations [6,8]. To date, major EHRs have employed diverse technologies for data formatting and sharing, but there is still a noticeable gap in integrating data from different HCOs to facilitate predictive decision-making [1,2,5].

2.3. Different Levels of Healthcare Interoperability

Informatics experts and the Healthcare Information and Management Systems Society (HIMSS) have defined four distinct levels of interoperability [10,16] [26]. While some of these levels can already be achieved with existing healthcare IT systems and architecture, others will require new ideas and advancements in patient-centered technology [6,8]. These levels are as follows:

- Traditional Level: At this level, data is transferred from one system to another without being interpreted or formatted in a specific way. For example, a nurse manually enters information from a PDF file of a patient's lab results into the patient's health record.
- Structural Level: All data is standardized in a specific format to ensure it can be understood by various systems or devices. Structural interoperability, achieved through data standards like FHIR and HL7, aims to make records uniform, centralized, and easily transportable between systems [18].
- Semantic Level: Heterogeneous EHRs must be exchangeable among different systems, allowing the transfer and integration of various types of data. For instance, image data can be transported from one system to another, evaluated, and integrated into the new system regardless of the original format.

- **Organizational Level:** This level pertains to the seamless transfer of data among diverse organizations with different requirements, rules, and objectives. Achieving interoperability at this level requires innovations in governance, policy, and technology to ensure integrated workflows, data security, and consent among various parties.

2.4. Challenges in Establishing Healthcare Interoperability

While increased interoperability is believed to enhance healthcare overall, healthcare organizations face several common challenges when striving to make their data and systems more interoperable [10,16]. Let's explore these issues and potential solutions:

- **Coordination:** Collaboration within organizations and coordination across diverse organizations, authorities, and decision-makers is crucial for improving interoperability. Healthcare organizations should consider creating a specialized interoperability strategy and prioritize interoperability planning [19].
- **Financial Constraints:** Not all organizations have the financial or technical resources to invest in the technological requirements for establishing a truly interoperable system [20]. Eligibility for government grants and exploring pay-as-you-go payment options offered by cloud companies can help address financial constraints.
- **Diverse Needs:** Organizations must adhere to various norms and regulations depending on the type of healthcare services they provide and their geographical location, resulting in highly personalized data. Hybrid cloud platforms can help connect different internal and external systems while accommodating customized data requirements.
- **Legacy Systems:** Upgrading existing systems to meet interoperability requirements while dealing with outdated legacy systems can be a challenge. Adopting a hybrid cloud strategy can help extract data from legacy systems and make it more accessible for modern applications and programs.

2.5. Solutions for Achieving Data Interoperability

This section provides a brief overview of available options that organizations can utilize to ensure smooth data flow within their systems:

Data Warehouse-Based Solution: The use of a traditional data warehouse-based solution is not practical in this context as it primarily deals with heterogeneous data and aims to consolidate multiple small data sources into a single large one. However, this approach can be challenging when converting data types and retrieving data at the primary point of use, making it less feasible [1,8,10].

- **Consolidated Clinical Document Architecture (C-CDA):** C-CDA is a standardized document format that contains essential data, but it can be compared to a

PDF in that the data is mostly static and requires additional effort to extract and convert to another format.

- **Fast Healthcare Interoperability Resource (FHIR):** FHIR is a powerful tool for integrating disparate systems, offering an application-based approach to interoperability and health information exchange [18]. FHIR was designed with the complexities of healthcare data in mind and takes a modern, internet-based approach to connect different discrete elements.
- **Application Programming Interface (API) and API-led Integration:** APIs enable data retrieval through an application programming interface instead of using a standard data format [19]. API-led integration refers to the process of connecting data and applications using APIs, allowing individuals both within and outside of an organization to create and utilize integration processes.

III. THE POWER OF CONTEMPORARY AND MODERN APIs IN HEALTHCARE

The fundamental purpose of an API is to facilitate communication between software systems. By leveraging APIs, healthcare service providers, pharmaceutical companies, insurance carriers, and other stakeholders can deliver innovative services and products to patients and partners. APIs offer a new alternative to traditional methods like fax machines, enabling healthcare stakeholders to connect to various systems and databases. For example, health insurers can use APIs to connect to the Aadhaar database for patient identity verification or utilize net banking for fund transfers. APIs follow established guidelines that govern how computers or programs can interact with each other [7]. With APIs, databases can be easily shared or accessed by other applications. APIs enable a "plug-and-play" approach, where correctly configured third-party software can seamlessly share data with electronic health records (EHRs). This concept can be compared to plugging an appliance into a wall socket to obtain electricity without requiring prior knowledge of electrical systems. Similarly, the socket represents the API, enabling users to submit requests and receive responses, while the appliance represents a new software application that utilizes the obtained information effectively.

3.1. Characteristics of Modern APIs

Modern APIs have the potential to revolutionize healthcare outcomes by empowering patients and facilitating collaboration among healthcare providers and new stakeholders [7]. Some key features of modern APIs include:

Product-like Approach: Modern APIs are designed to function more like products or assets, allowing authorized users to easily plug and play. They are specifically tailored for specific audiences, such as mobile developers, and are well-documented with clear expectations for maintenance and lifecycle management.

Strong Emphasis on Security, Governance, and Performance: Modern APIs adhere to stricter discipline in terms of security, governance, performance monitoring, and scalable capabilities.

Software Development Lifecycle (SDLC): Similar to any other software product, modern APIs have their own SDLC, involving design, testing, building, management, and versioning.

Adherence to Developer-Friendly Standards: Modern APIs follow standards that are developer-friendly, easily accessible, and broadly understood.

3.2. REST (Representational State Transfer)

While the concept of APIs is not new, the evolution of APIs has progressed. Modern APIs, known as REST APIs, can be used with any protocol but are typically based on the HTTP protocol. To illustrate, if you search for videos about APIs on YouTube by typing "API," you will receive a list of relevant videos. A REST API operates in a similar manner. When you make a request for a service, you receive a list of results in response. A REST API is an application programming interface that conforms to the constraints of the REST architectural style, enabling interaction with RESTful web services. Modern APIs, in contrast to monolithic APIs such as Java, .NET, SOAP, or RPC APIs, are lightweight. They are language, vendor, and platform-neutral, with a focus on targeting the clients who will consume them [21].

3.3. API-Led Connectivity in MuleSoft

Traditional peer-to-peer (P2P) approaches have limitations in terms of endpoints and speed. To address this, the MuleSoft platform is recommended, utilizing an agile-based API development cycle. API-led connectivity, an architectural approach in MuleSoft, unlocks back-end systems as APIs and segregates responsibilities into three layers. API-led connectivity is strongly advocated by MuleSoft's best practices for future-proof and extendable on-demand solutions. By leveraging various services provided by MuleSoft, an API-led network can be built, integrating different heterogeneous electronic health records (EHRs) [22,23].

3.4. Modern API Best Practices

Designing, implementing, and managing modern APIs requires making informed design decisions and following best practices, particularly when customers demand future-proof and reusable components that can

be extended based on their needs. MuleSoft's best practices strongly advocate adopting a "design first" approach. This approach allows API consumers to understand, interact with, and provide feedback on the API contract before the development process begins. By incorporating agility and considering users' and developers' feedback, unnecessary changes in the API build phase can be avoided.

The upcoming sections provide comprehensive approaches to accomplishing these goals using MuleSoft. The four pillars of best practices in MuleSoft include:

1. Planning and Initial Design or API Decision Tree:
This involves outlining modern APIs and utilizing an API decision tree exercise to identify APIs during the design and analysis phase.
2. Adoption of API-Led Connectivity Approach: This approach packages underlying connectivity and orchestration services as easily discoverable and reusable building blocks exposed through APIs.
3. API Lifecycle: MuleSoft enforces the rapid assembly of building blocks on-demand to meet integration requirements.
4. API Design Recommendations in MuleSoft.

IV. PROPOSED TRIPARTITE FRAMEWORK FOR HEALTHCARE

The interpretation of data and associated integration technologies form the cornerstone of next-gen healthcare's future. The suggested framework introduces an Integrated Platform for API design and management. The MuleSoft ESB, a lightweight Java-based enterprise service bus (ESB), is utilized as the runtime engine of the Anypoint Platform to connect applications swiftly and smoothly, thereby facilitating data exchange. Regardless of the technologies employed by different applications such as JMS, Web Services, JDBC, and HTTP, it enables seamless communication between them by acting as a data transit system within your enterprise or over the internet, replete with Connectors and Transformers features. The Anypoint platform enables the creation of a seamless application network of applications, devices, legacy systems, or any kind of products like Salesforce, SAP, etc., including social media applications like Facebook and Twitter.

4.1. System Model

- **System Layer:** This constitutes the base of the three-tier architecture. It typically accesses the core systems of record and shields the user from any complexity or changes in the subsequent layer.

- Process Layer: In this layer, the API interacts with data within the system or across systems, maintaining privacy in the process.
- Experience Layer: In this layer, data can be easily restructured according to specific requirements. Unneeded methods can be eliminated, and essential methods can be exposed in a simplified manner. Previously, most health information exchange and data interoperability were document-based. Whether transmitted via fax, email, or electronic means, providers usually had to select a specific set of data and then create a message containing that data. Although this method facilitated communication, it could be excessively restrictive for effective care coordination, decision-making, or data analytics.

4.2. API-led Connectivity Architectural Approach

API-led connectivity is an architectural method that structures APIs as building blocks to connect and expose assets across three separate layers. It decentralizes end systems (such as Databases, Mainframe legacy, SAP, Salesforce etc.) and exposes them as assets in the digital realm. This design strategy ensures data security and maintains integrity while exposing it to the external world [22]. With this method, instead of point-to-point connections, every asset becomes a managed, modern API. Overcoming the hurdles of monolithic applications and generating reusable, easy-to-govern APIs is a challenge in a monolithic design. The design approach must favor modern APIs that assist customers in their IT system's digital transformation. The proposed framework centers on "purposeful and reusable APIs." In API-led connectivity, MuleSoft logically divides API responsibilities into "three distinct logical layers." However, the current IT world is highly volatile, and IT customers can digitize their businesses through various channels based on customer demand. Therefore, monolithic APIs cannot cater to such rapid digital transformation. API-led connectivity introduces distinct building blocks encapsulating three components to address this business need.

- Interface: This concentrates more on API client data representation rather than any business logic or any middle-tier logic.
- Orchestration: This component focuses more on data manipulation within a single system or across systems like the aggregation of the underlying system API or APIs. Orchestration should be required to fulfill a business function.
- Connectivity: This refers to the decentralized access to core assets such as Databases, legacy systems, or any SaaS or PaaS. The API-led Connectivity architectural approach actualizes the above components (Interface, Orchestration, and Connections) through Experience APIs, Process APIs, and System APIs.

4.3. Loyalty APIs Framework for the Healthcare Ecosystem

The subsequent diagram displays a Loyalty system for the healthcare ecosystem. To establish an IT system capable of supporting diverse customers and numerous internal and external systems, we propose the use of MuleSoft ESB, which can generate reusable APIs for digital channels and reveal the backend systems by presenting system APIs. The API-led Connectivity-based proposed approach provides an "ownership-based" API integration, composed of three layers:

- (a) Experience Layer: This layer represents or formulates data for user-facing applications or channels, dedicated solely to user-facing applications.
- (b) Process Layer: This layer formulates functional use cases to compose and transform data related to EDI, Mobile app API, B2B (Business to Business), B2C (Business to Commerce), etc.
- (c) System Layer: This layer unlocks data from backend systems like Azure, SAP, Salesforce, and Cloud DB.

System APIs decentralize access to backend systems while processing APIs aggregate system APIs and segregate business logic from System APIs. Experience APIs reveal data for front-end applications, focusing on data representation for various channels. Healthcare payer organizations may handle strategy formulation, data curation and management, patient access API administration, implementation and support, and consent management with comprehensive interoperability solutions. By enhancing healthcare information sharing in addition to adhering to the CMS final rule requirements, payer organizations can better engage their members, compete more effectively in their markets, and undergo a digital transformation.

V. ANALYSIS OF THE PROPOSED FRAMEWORK

The suggested framework, dedicated to healthcare-specific integration APIs, must fulfill some critical objectives:

- Transition to Cloud: With the rising prominence of the cloud, numerous enterprises are selecting cloud infrastructure. However, shifting from legacy systems isn't always a smooth process. API-led connectivity facilitates this transition seamlessly, fostering faster innovation.
- Global Presence: API-led connectivity allows businesses to expand to new markets by unlocking data and infrastructure readily to incorporate necessary systems.
- Scalability: Through ensuring API reusability and facilitating microservices, API-led connectivity speeds up application development and integration of existing systems.

- Real-Time: Rapid response to customer inquiries is vital for business growth, a task API-led connectivity performs efficiently by offering real-time information about potential customers.
- Bi-modal IT with Agility: While maintaining stability and control over the core system of records, API-led connectivity permits rapid innovation and iteration of applications accessing these systems.
- Unified Connectivity: This entails having a comprehensive stack of blocks on one platform encompassing connectivity, services, and APIs.
- High Productivity: This involves swiftly experimenting with new initiatives without any system-level discrepancies.
- Business Platform: With cross-API connectivity, businesses become self-reliant.
- Hybrid: This ensures an easy shift to the cloud and guarantees code reusability.
- Better Estimation: This provides accurate estimations concerning code changes.

VI. CONCLUSION

Currently, numerous healthcare-specific APIs-based solutions are aiding organizations in achieving their desired results. Indian healthcare organizations have also embraced APIs in recent years, not only for interoperability but also for secure electronic information transfer between health IT systems and third-party applications. Nonetheless, this also comes with considerable risks and weaknesses. To accomplish a fully interoperable system, more work needs to be done. The proposed framework offers a wide-ranging set of capabilities and services, satisfying all stakeholders while also meeting user privacy and consent expectations. APIs serve not only as patient-centric solutions but can also interweave with various technological innovations to provide robust and integrated solutions, benefiting various stakeholders in the medical sector like AI and Big Data. By applying the proposed framework, we can seamlessly integrate any ERP, CRM, E-commerce Store, marketplace, Shipping, and POS Systems under one platform to automate the process.

REFERENCES

- [1] G. Srividhya, "Electronic health records: a transitional view," in The Internet of medical things (IOMT) Healthcare transformation, 2022, pp. 289-300.
- [2] A.D. Aguru, E.S. Babu, S.R. Nayak, A. Sethy, and A. Verma, "Integrated industrial reference architecture for smart healthcare in the internet of things: a systematic investigation," Algorithms, vol. 15, no. 9, p. 309, 2022.
- [3] M. Attaran, "Blockchain technology in healthcare: challenges and opportunities," Int J Healthc Manag, vol. 15, no. 1, pp. 70-83, 2022.
- [4] G. Umashankar et al., "Evolution of electronic health records," in The Internet of medical things (IOMT) Healthcare transformation, 2022, pp. 143-160.
- [5] A. Kiourtis et al., "Electronic health records at people's hands across Europe: the interoperable protocols," in PHealth2022, IOS Press, 2022, pp. 145-150.
- [6] C. Symvoulidis et al., "Healthcare provision in the cloud: an EHR object store-based cloud used for emergency," HEALTHINF, vol. 1, pp. 435-442, 2021.
- [7] The importance of APIs for perfect healthcare, Orion Health White Paper Fiora Au Product Director APIs 022018, [Online]. Available: https://orionhealth.com/media/4879/the-importance-of-apis-us-082019_web-final.pdf.
- [8] The Forrester Wave™: API management solutions, Q3, 2022, [Online]. Available: <https://www.ibm.com/account/reg/us-en/signup?formid=urx-35095>.
- [9] K. Kawamoto et al., "Establishing a multidisciplinary initiative for interoperable electronic health record innovations at an academic medical center," JAMIA Open, vol. 4, no. 3, p. ooab041, 2021.
- [10] H. Fatoum et al., "Blockchain integration with digital technology and the future of health care ecosystems: systematic review," J Med Internet Res, vol. 23, no. 11, p. E19846, 2021.
- [11] J. Sorace et al., "Quantifying the competitiveness of the electronic health record market and its implications for interoperability," Int J Med Inform, vol. 136, p. 104037, 2020.
- [12] B. Farahani, F. Firouzi, and K. Chakrabarty, "Healthcare IoT," in Intelligent Internet of things, Cham: Springer, 2020, pp. 515-545.
- [13] R. Ben Fekih and M. Lahami, "Application of blockchain technology in healthcare: a comprehensive study," in the international conference on smart homes and health telematics, Cham: Springer, 2020, pp. 268-276.
- [14] A. Tandon et al., "Blockchain in healthcare: a systematic literature review, synthesizing framework and future research agenda," Comput Ind, vol. 122, p. 103290, 2020.
- [15] P. Durneva, K. Cousins, and M. Chen, "The current state of research, challenges, and future research directions of blockchain technology in patient care: systematic review," J Med Internet Res, vol. 22, no. 7, p. E18619, 2020.
- [16] S. Prabakaran and S. Mitra, "Survey of analysis of crime detection techniques using data mining and machine learning," J Phys Conf Ser, vol. 1000, no. 1, p. 012046, 2018.

Author Profile

Wasim Fathima Shah is a highly skilled Healthcare IT Scrum Master with expertise in Healthcare Standards Implementation and information technology. Hailing from the United States of America, Wasim has made significant contributions to the healthcare industry through her extensive knowledge and experience. With a master's degree in engineering management, Wasim possesses a strong academic foundation and a deep understanding of the technical aspects of healthcare systems. Her expertise lies in implementing and ensuring compliance

with healthcare standards, which play a crucial role in enhancing patient care, interoperability, and data security.

Throughout her career, Wasim has been at the forefront of driving digital transformation in healthcare organizations. Her ability to navigate complex IT landscapes and integrate standards-based solutions has helped streamline processes, improve data exchange, and enhance patient outcomes. As a Healthcare IT Scrum Master, Wasim has successfully led cross-functional teams, fostered collaboration, and ensured the efficient delivery of projects.

Working in the dynamic healthcare industry, Wasim recognizes the significance of Healthcare Standards Implementation in ensuring interoperability and seamless communication across various healthcare systems. She stays updated with the latest advancements and trends in the field, continuously expanding her knowledge base to provide innovative solutions and drive positive change.

Wasim's dedication to her work is evident in her tenure at Wellmark Blue Cross Blue Shield, where she is currently employed. Wellmark is a renowned healthcare company, and as a Healthcare IT Scrum Master, Wasim plays a pivotal role in driving digital transformation initiatives and ensuring the implementation of industry standards. Her work at Wellmark has contributed to the organization's success in providing high-quality healthcare services and meeting the evolving needs of patients and stakeholders.

Beyond her professional achievements, Wasim is known for her strong work ethic, excellent communication skills, and collaborative approach. She is a problem solver and a natural leader, capable of guiding teams through complex projects and overcoming challenges. Wasim's ability to balance technical expertise with a deep understanding of the healthcare domain allows her to bridge the gap between technology and patient care, ensuring that IT solutions align with the needs and goals of healthcare organizations.