

Decentralized Money: A Comprehensive Review on Cryptocurrencies

¹Priyanka Verma, ²Debjit Mukherjee, ³Bhavika Moza

^{1,2,3} Department Of Forensic Science Chandigarh University, Nh-95, Mohali, Punjab

¹priyanka.pharma@cumail.in, ²debjit.mukherjee2018@gmail.com, ³bhavika.moza9@gmail.com

Abstract: The rapid pace of technological advancement has driven the emergence of innovative payment platforms catering to consumers' demands for adaptable, user-friendly, cost-effective, and time-efficient transaction solutions. Among these cutting-edge innovations, decentralized digital currencies, commonly known as cryptocurrencies, along with their underlying blockchain technology, have emerged as highly promising disruptors in the financial landscape. This comprehensive review article delves into the intricate effects of cryptocurrencies as a decentralized form of money on contemporary society. Leveraging the inherent accessibility and cost-efficiency of cryptocurrencies, these digital assets empower marginalized populations, facilitating seamless cross-border remittances and expanding financial opportunities. Nonetheless, the volatile nature of cryptocurrency prices and the prevalence of fraudulent activities have sparked concerns among investors and regulators. The lack of robust regulatory oversight and the veil of anonymity shrouding transactions have rendered cryptocurrencies susceptible to scams and money laundering, necessitating unwavering vigilance and innovative strategies to combat these issues. Additionally, the energy-intensive nature of cryptocurrency mining has sparked environmental apprehensions, underscoring the imperative of adopting sustainable practices in the industry. Prudent management of digital assets and the implementation of robust security measures are vital in safeguarding users from potential risks, including fund loss resulting from accidents or hacking incidents. The future of cryptocurrencies promises further advancements, with various countries exploring the concept of Central Bank Digital Currencies (CBDCs) to enhance payment systems and financial services. Scalable solutions, such as layer 2 protocols and sharding techniques, hold the potential to address scalability challenges and optimize transaction speeds. Moreover, the convergence of Artificial Intelligence (AI) and cryptocurrencies opens up an exciting frontier where AI models and strategies may unveil novel insights and approaches in cryptocurrency markets. While cryptocurrencies present promising opportunities for financial inclusion and innovation, they also pose challenges and risks that demand careful consideration. By embracing innovation, nurturing financial inclusion, and proactively addressing potential risks, the future of cryptocurrencies is poised for sustained growth and evolution, shaping the way we interact with money and finance in the years to come.

Keywords: Cryptocurrency, Block chain, financial inclusion, Regulatory oversight, Artificial Intelligence (AI)

I. Introduction

The relentless march of technological progress is fueling a growing demand among consumers for flexible, intuitive, cost-efficient, and time-saving transaction solutions. This unceasing demand is a driving force behind the evolution of payment platforms. At the forefront of innovative developments in the financial sector, we find the rise of decentralized digital currencies, more commonly known as cryptocurrencies. These digital assets come hand in hand with cutting-edge online payment protocols, which operate on a decentralized peer-to-peer network, commonly referred to as blockchain technology. [1]. Cryptocurrency represents a groundbreaking digital asset meticulously designed to serve as a dependable repository of value and a frictionless means of

transaction. On February 28th, 2018, the aggregate market capitalization of the cryptocurrency market achieved a significant milestone, reaching a substantial total of \$448 billion. This encompassed an impressive array of 1,524 distinct currencies. Within the realm of cryptocurrencies, numerous controversies persist, igniting lively debates regarding its proper classification - whether it should be regarded as a commodity, an investment, a form of property, a traditional currency, or a distinct entity as a modern digital currency [2]. Bitcoin stands as a decentralized, distributed, peer-to-peer virtual cryptocurrency, ingeniously birthed in 2009 by an enigmatic figure adopting the pseudonymous identity of Satoshi Nakamoto. It exists solely online as a form of virtual currency, transferred directly between individuals over the internet, eliminating the need for

centralized third parties like banks. Bitcoin owners have complete control over their funds and can spend them at their discretion, free from unnecessary fees. Bitcoin's underlying technology is based on the blockchain concept, a chain of interconnected blocks containing transaction records and unique hash files, securing the network. The process of creating new bitcoins is called mining, where individuals, known as miners, ensure the integrity and security of the Bitcoin network. As a digital currency, Bitcoin serves as an alternative to physical money for buying, selling, and exchanging goods. Its versatile nature allows it to be traded for other traditional currencies, making it an asset in the modern financial landscape [3].

Numerous cryptocurrencies have emerged in the wake of Bitcoin's inception, yet it remains unparalleled in popularity, demonstrated by its commanding position with the highest market capitalization and trading volume, as illustrated in Table 1 below.

Table-1: This table provides an overview of the market standing of these cryptocurrencies, with Bitcoin leading the pack in terms of both market capitalization and trading volume. [2]

Index	Name	Price	Market cap	Volume
			(\$billion)	(\$24 hours billion)
1.	Bitcoin	\$10,559.20	\$1.89	\$6.9
2.	Ethereum	\$869.63	\$85.1	\$2.0
3.	Ripple	\$0.921	\$36.0	\$0.33
4.	Bitcoin Cash	\$1,223.85	\$20.8	\$0.38
5.	Litecoin	\$208.43	\$11.6	\$0.78
6.	NEO	\$135.27	\$8.8	\$0.33
7.	Cardano	\$0.317	\$8.7	\$0.12
8.	Stellar	\$0.346	\$8.2	\$0.037
9.	EOS	\$8.64	\$6.0	\$0.38
10.	IOTA	\$1.89	\$5.3	\$0.044

The primary aim of this review article, is to conduct a thorough and comprehensive examination of the diverse and intricate effects that cryptocurrencies, serving as a decentralized form of money, have on contemporary society.

II. The Core Principles and Mechanisms of bitcoin transaction process

The Bitcoin transaction process is intricately intertwined with the fundamental principles of

blockchain methodology, ledger, mining, and hash functions. The blockchain operates as a decentralized and transparent public ledger, diligently recording a chronological sequence of all Bitcoin transactions. This decentralized system relies on a network of distributed nodes, collaboratively validating and securely storing new transactions within blocks. Every Bitcoin transaction contains essential data, encompassing the unique sender and recipient addresses, along with the precise amount of bitcoin being transferred. These transactions are efficiently grouped into blocks, with each block being distinguished by a distinctive identifier known as a block header. The block header, in turn, comprises vital information such as a timestamp, a reference to the hash of the preceding block, and a nonce - an integral element utilized in the mining process. Mining serves as the pivotal mechanism for appending new blocks to the blockchain. Miners, acting as active nodes within the network, engage in an intense competition to solve intricate mathematical puzzles known as proof-of-work. By successfully validating and confirming transactions, miners earn the privilege of adding a new block to the blockchain. Accomplishing this feat necessitates discovering a specific nonce that, when combined with other block data, generates a hash satisfying a predetermined difficulty target. Notably, the difficulty target is regularly adjusted to maintain an average block addition time of roughly 10 minutes, ensuring a reliable and efficient network operation. Central to the security and integrity of the blockchain is the implementation of a critical cryptographic algorithm known as the hash function. In the context of Bitcoin, the widely accepted and robust SHA-256 (Secure Hash Algorithm 256-bit) is employed. This cryptographic technique guarantees that even minor alterations in the input data produce entirely distinct and unpredictable hash outputs, effectively safeguarding against tampering and preserving the blockchain's inviolability. Significantly, each block's header incorporates the hash of the previous block, creating an unbreakable chain of interconnected blocks that constitute the "blockchain." [4]–[8]

A user initiates a Bitcoin transaction by submitting a digital message containing the recipient's Bitcoin address, the precise amount of bitcoin to be transferred, and an optional transaction fee (advised to incentivize miners for block inclusion). To validate the transaction's legitimacy and establish ownership of the bitcoins being transferred, the sender employs their private key to generate a digital signature. This cryptographic signature plays a vital role in upholding the transaction's integrity and authenticity. Once the transaction is created and signed, it swiftly propagates across the vast Bitcoin network, disseminating through nodes - actively participating computers within the network. Subsequently, nodes within the network undertake the crucial task of rigorously verifying the transaction's

authenticity. This verification process entails meticulous scrutiny of the digital signature and cross-referencing it with the sender's public key, thereby ensuring that the sender indeed possesses the required funds for executing the transaction. Following successful verification, validated transactions are diligently gathered and grouped by miners, specialized nodes entrusted with forming blocks of transactions. Miners actively compete in a dynamic race to solve intricate mathematical puzzles, known as proof-of-work. The miner who triumphantly solves the puzzle gains the exclusive privilege of appending the block of verified transactions to the immutable Bitcoin blockchain. At this pivotal stage, other nodes within the network undertake an additional round of verification, thoroughly scrutinizing the new block's validity along with its constituent transactions. To secure confirmation and integration into the blockchain, a transaction typically necessitates consecutive additions of multiple subsequent blocks, often requiring six confirmations. This rigorous and iterative process instills a robust and unyielding layer of security, thereby ensuring the unchangeable nature of the transaction. Upon achieving successful confirmation, the transaction becomes an indelible and transparent entry within the public ledger, accessible to all participants of the Bitcoin network. The recipient of the bitcoin can now readily access the received funds within their wallet, affording the freedom to utilize the bitcoins for subsequent transactions or to retain them as a sound long-term investment. The Bitcoin blockchain effectively functions as an open and publicly accessible ledger, permitting comprehensive verification and in-depth analysis of individual transactions through an array of tools and blockchain explorers readily available online. [9]–[15]

III. Cryptocurrency and Financial Inclusion

In the realm of financial inclusion, cryptocurrencies serve as a potent catalyst, striving to mitigate the disparities between individuals lacking access to formal banking services and the more privileged users of traditional financial infrastructures. By harnessing the decentralized power of blockchain technology, cryptocurrencies present a plethora of attributes that can effectively break down barriers to financial inclusion. [16], [17]

Cryptocurrencies possess the remarkable characteristic of being accessible and utilizable by anyone possessing an internet connection. This unique feature empowers individuals in distant or underserved regions to partake in the expansive global financial ecosystem, all the while circumventing the need for reliance on conventional banking infrastructure. [18]

Conventional banking services frequently entail exorbitant fees, rendering small transactions financially impractical for marginalized populations. In contrast, cryptocurrency transactions can substantially mitigate costs, thereby rendering financial services more economically viable and attainable for individuals with limited financial means. This cost reduction can prove to be a boon for those who have been historically underserved or financially excluded, as it enables them to engage in meaningful economic activities without the burden of high transaction fees. [19], [20]

Cryptocurrencies offer the distinct advantage of expediting and streamlining cross-border transactions, making them more cost-effective. This characteristic proves especially consequential for migrant workers who frequently send remittances to their families in their home countries. By leveraging cryptocurrencies, the efficiency of remittance services is significantly enhanced, and the associated costs are notably reduced. As a result, the financial burden on migrant workers is alleviated, and their families receive the much-needed funds more swiftly, enabling them to meet their essential needs with greater ease and timeliness. [21], [22]

Cryptocurrencies empower individuals with absolute autonomy over their funds, circumventing the necessity for intermediaries or third-party entities. This financial liberation holds exceptional significance for individuals facing barriers to accessing traditional banking services, often stemming from regulatory constraints or identity-related challenges. By harnessing cryptocurrencies, these marginalized individuals can break free from the limitations imposed by traditional financial systems and assert greater control over their economic resources. This newfound financial sovereignty not only fosters greater financial inclusion but also cultivates a sense of empowerment and self-reliance within these underserved communities. [23], [24]

Cryptocurrencies present an expansive array of investment prospects that extend beyond the realm of traditional financial instruments, affording individuals the chance to partake in the burgeoning digital asset market. Through this involvement, there lies the potential for wealth accumulation and substantial financial growth. Embracing cryptocurrencies allows investors to tap into a dynamic landscape, characterized by innovation, decentralized technologies, and novel opportunities for profit. As this digital asset market continues to evolve, astute investors stand to reap the rewards of early adoption and strategic decision-making, fostering the possibility of significant financial gains and an enhanced financial future [25]–[27].

A study employing critical discourse analysis delved into the intricate relationship between cryptocurrency and financial inclusion. The examination encompassed

an assessment of the advantages and drawbacks associated with central bank digital currency (CBDC), fintech, and cryptocurrency in the context of financial inclusion and stability. This scholarly inquiry shed light on the intricate ways these technological advancements influence the accessibility and stability of established financial systems. The research outcomes underscored the potential of cryptocurrency, alongside CBDC and fintech, to invigorate financial inclusion. This arises from their capacity to provide an alternative avenue for individuals who lack traditional banking avenues to interact with formal financial mechanisms. Cryptocurrency's inherent decentralization and its worldwide reach empower historically marginalized segments of society, facilitating a spectrum of financial activities encompassing transactions, savings, and investments. Nevertheless, the study astutely acknowledged the introduction of distinct stability risks inherent to cryptocurrency, necessitating a rigorous regulatory framework. The decentralized and semi-anonymous attributes of many cryptocurrencies present possibilities for misuse, including illicit financial operations. Regulatory measures are indispensably pivotal in curtailing these vulnerabilities and nurturing responsible utilization of cryptocurrency resources. Parallel to potential benefits, the research aptly identified obstacles intertwined with CBDCs, fintech, and cryptocurrency in relation to both financial inclusion and stability. Obstacles such as underdeveloped digital infrastructure, manifesting as limited internet accessibility and insufficient technological proficiency among specific demographics, might obstruct the widespread adoption of these technologies. Moreover, the rapid evolution of fintech and cryptocurrency could conceivably surpass the pace at which regulatory mechanisms are established, potentially resulting in vulnerabilities if not meticulously managed[28].

3.1. Detrimental Effects of Cryptocurrencies on Society and Economy

The proliferation of cryptocurrencies has engendered a plethora of adverse ramifications on both society and the economy. Despite the innovative opportunities these digital assets present, they also entail substantial challenges and risks that demand meticulous scrutiny. Cryptocurrencies have garnered notoriety due to their excessive price volatility. The rapid and capricious price fluctuations can incite speculative bubbles, drawing in investors in pursuit of swift gains. Such speculative tendencies may lead to substantial financial losses for individuals and contribute to the overall instability of the market. [29], [30]

The decentralized and pseudonymous attributes of cryptocurrencies render them alluring to unscrupulous scammers and fraudsters. The absence of robust regulatory oversight and the cloak of anonymity

surrounding transactions have given rise to a plethora of scams, Ponzi schemes, and deceptive Initial Coin Offerings (ICOs). These fraudulent activities have inflicted substantial financial detriment upon unsuspecting investors, highlighting the inherent risks and challenges associated with the cryptocurrency space. [31]–[34]

Cryptocurrencies have been linked to the facilitation of money laundering and illicit activities owing to their intrinsic privacy features. Criminal elements leverage cryptocurrencies to transfer funds covertly, exploiting the anonymity they provide, thereby creating significant hurdles for law enforcement agencies in their efforts to trace and prosecute unlawful transactions. This concealment of financial activities within the cryptocurrency realm poses an ongoing challenge for regulatory bodies, necessitating constant vigilance and innovative approaches to combat financial crime effectively. [35]–[37]

The process of mining cryptocurrencies demands an exorbitant amount of computing power and energy consumption. As a result, cryptocurrency mining significantly contributes to heightened energy consumption and carbon emissions, exacerbating critical environmental concerns associated with climate change. The energy-intensive nature of mining operations places substantial strain on global resources and amplifies the carbon footprint, underscoring the urgent need to confront the environmental impact of the cryptocurrency industry. To address these challenges, embracing sustainable and eco-friendly approaches to mining and blockchain validation becomes imperative in order to alleviate the ecological consequences inherent in this swiftly expanding digital realm [38]–[41].

The intricacies of blockchain technology and the inherent risks involved in holding and managing digital assets can present formidable technological hurdles for users. Mishaps such as the loss of private keys or falling victim to hacking incidents can lead to irrevocable loss of funds, plunging individuals into severe financial distress. Navigating the complexities of securing and safeguarding cryptocurrencies requires a robust understanding of digital security best practices to minimize the vulnerabilities and potential pitfalls that users may encounter. [41]–[43]

While cryptocurrencies possess the potential to revolutionize the financial landscape and unlock new opportunities, it is crucial not to overlook their adverse impact on society and the economy. Addressing these challenges necessitates a well-balanced approach, entailing collaborative efforts among stakeholders, the establishment of clear regulatory frameworks, and the promotion of public awareness. This multifaceted approach is essential to ensure the responsible and sustainable integration of cryptocurrencies into the global financial ecosystem. By fostering an environment

of informed decision-making, responsible practices, and collective vigilance, the negative consequences can be mitigated, and the transformative potential of cryptocurrencies can be harnessed for the collective benefit of society and the economy. [44]

IV. Future Advancements in the field of Cryptocurrency

The future of cryptocurrencies in modern society appears promising and revolutionary. As ongoing technological advancements unfold, cryptocurrencies are poised to assume an ever more central and influential position in diverse spheres of our existence, encompassing finance, commerce, and technology.

Numerous countries are actively exploring the concept of Central Bank Digital Currencies (CBDCs) as a viable supplement to physical cash. The prospective integration of CBDCs bears the potential to introduce heightened efficiency into existing payment systems, effectively reducing operational expenses, and providing advanced financial services to the broader public. [45]

Scalability has persistently posed a significant challenge for numerous cryptocurrencies, leading to prolonged transaction times and increased fees during periods of network congestion. Anticipated advancements are poised to prioritize the integration of scalable solutions, such as layer 2 protocols (e.g., Lightning Network for Bitcoin) and sharding techniques, with the primary objective of enhancing transaction throughput and alleviating latency. [46], [47]

Similar to the captivating rise of cryptocurrencies, AI represents another cutting-edge technological advancement that continues to garner increasing intrigue. AI encompasses a diverse array of techniques, such as machine learning, deep learning, and natural language processing, permeating various facets of human society with rapidity. Its application spans a broad spectrum, impacting domains like e-commerce, autonomous vehicles, image recognition, and numerous others. Significantly, financial institutions are progressively delving into the exploration and implementation of AI techniques to gain a competitive edge, particularly in the realm of trading. Money managers are enlisting the expertise of numerous quantitative specialists to forge sophisticated AI models for predicting prices, identifying signals, and monitoring market sentiment, among other endeavors. While the effectiveness of these endeavors remains a subject of ongoing debate, AI models and strategies are increasingly gaining traction in various markets, including equity, commodity, and foreign exchange. Consequently, it is only a matter of time before practitioners and academic researchers embrace AI techniques to thoroughly scrutinize and analyze the dynamics of cryptocurrency markets. The potential

convergence of AI and cryptocurrencies holds the promise of unlocking groundbreaking insights and fostering innovative approaches in this rapidly evolving landscape. [2], [48]

V. Conclusion

As technological advancements persist, the financial world bears witness to the revolutionary impact of cryptocurrencies and their underlying blockchain technology. These digital assets, operating on a decentralized and transparent network, possess the potential to revolutionize various facets of modern society. [10], [11] Despite the enticing opportunities they offer, cryptocurrencies also entail formidable challenges and risks that necessitate cautious consideration. Cryptocurrencies have emerged as a promising avenue for fostering financial inclusion, providing individuals with limited access to traditional banking services an opportunity to participate in the global financial ecosystem. [18], [20] The inherent accessibility and cost-efficiency of cryptocurrencies empower marginalized populations, facilitating seamless cross-border remittances and expanding financial horizons. However, the volatile nature of cryptocurrency prices and the prevalence of fraudulent activities have elicited concerns among investors and regulatory authorities. The lack of robust regulatory oversight and the veil of anonymity surrounding transactions have made cryptocurrencies vulnerable to scams and money laundering, demanding vigilant scrutiny and innovative strategies to combat these illicit practices. [31], [35]–[37]. Furthermore, the energy-intensive process of cryptocurrency mining has raised ecological apprehensions, underscoring the urgency of adopting sustainable and environmentally-friendly practices in the industry. Prudent management of digital assets and the implementation of robust security measures are indispensable in safeguarding users from potential risks, including the perils of fund loss arising from accidents or hacking incidents. Looking ahead, the future of cryptocurrencies brims with promise and potential for further breakthroughs. Numerous countries are actively exploring the concept of Central Bank Digital Currencies (CBDCs) to elevate payment systems and financial services. [45] Scalable solutions, such as layer 2 protocols and sharding techniques, are poised to address scalability challenges and enhance transaction speeds. Moreover, the convergence of Artificial Intelligence (AI) and cryptocurrencies presents an enthralling frontier, wherein AI models and strategies may unveil novel insights and approaches in cryptocurrency markets. [2] As the landscape continues to evolve, judicious contemplation of regulatory frameworks, public awareness, and responsible practices will prove indispensable in harnessing the transformative potential of cryptocurrencies for the

collective welfare of society and the economy. Cryptocurrencies have assumed a pivotal role in the financial realm, proffering both opportunities and obstacles. Embracing innovation, nurturing financial inclusion, and addressing potential risks are key to steering the future of cryptocurrencies towards sustained growth and evolution, thereby shaping the paradigm of monetary interaction and financial conduct in the years to come.[1]

References

- [1] R. Al-Amri, N. H. Zakaria, A. Habbal, and S. Hassan, "Cryptocurrency adoption: current stage, opportunities, and open challenges," *International journal of advanced computer research*, vol. 9, no. 44, pp. 293–307, 2019.
- [2] J. Liew, R. Z. Li, T. Budavári, and A. Sharma, "Cryptocurrency investing examined," *The Journal of The British Blockchain Association*, vol. 2, no. 2, pp. 1–12, 2019.
- [3] S. Ghimire and H. Selvaraj, "A survey on bitcoin cryptocurrency and its mining," in *2018 26th International Conference on Systems Engineering (ICSEng)*, IEEE, 2018, pp. 1–6.
- [4] L. A. Ajao, J. Agajo, E. A. Adedokun, and L. Karngong, "Crypto hash algorithm-based blockchain technology for managing decentralized ledger database in oil and gas industry," *J (Basel)*, vol. 2, no. 3, pp. 300–325, 2019.
- [5] U. Mukhopadhyay, A. Skjellum, O. Hambolu, J. Oakley, L. Yu, and R. Brooks, "A brief survey of cryptocurrency systems," in *2016 14th annual conference on privacy, security and trust (PST)*, IEEE, 2016, pp. 745–752.
- [6] F. Wang *et al.*, "An experimental investigation into the hash functions used in blockchains," *IEEE Trans Eng Manag*, vol. 67, no. 4, pp. 1404–1424, 2019.
- [7] R. T. Aune, A. Krellenstein, M. O'Hara, and O. Slama, "Footprints on a blockchain: Trading and information leakage in distributed ledgers," *The Journal of Trading (Retired)*, vol. 13, no. 4. Institutional Investor Journals Umbrella, pp. 49–57, 2018.
- [8] A. Songara and L. Chouhan, "Blockchain: a decentralized technique for securing Internet of Things," in *Conference on Emerging Trends in Engineering Innovations & Technology Management (ICET: EITM-2017)*, 2017.
- [9] R. Garg, *Blockchain for real world applications*. John Wiley & Sons, 2023.
- [10] M. B. Mollah *et al.*, "Blockchain for future smart grid: A comprehensive survey," *IEEE Internet Things J*, vol. 8, no. 1, pp. 18–43, 2020.
- [11] W. Mougayar, *The business blockchain: promise, practice, and application of the next Internet technology*. John Wiley & Sons, 2016.
- [12] L. Lantz and D. Cawrey, *Mastering blockchain*. O'Reilly Media, 2020.
- [13] V. Dhillon, D. Metcalf, and M. Hooper, "Blockchain enabled applications," *Berkeley, CA: Apress*, 2017.
- [14] J. P. M. Cruz, "The Bitcoin Network as Platform for Role-Based Access Control and Electronic Voting: Using Blockchain-Based Technology to Create Innovative Systems," *Information Systems. Nara Institute of Science and Technology (NAIST)(Unpublished)*, 2017.
- [15] J. Holbrook, *Architecting enterprise blockchain solutions*. John Wiley & Sons, 2020.
- [16] R. Auer, M. Farag, U. Lewrick, L. Orazem, and M. Zoss, "Banking in the shadow of Bitcoin? The institutional adoption of cryptocurrencies," 2023.
- [17] D. L. K. Chuen and R. H. Deng, *Handbook of blockchain, digital finance, and inclusion: cryptocurrency, fintech, insurtech, regulation, Chinatech, mobile security, and distributed ledger*. Academic Press, 2017.
- [18] A. B. Chu, "Mobile technology and financial inclusion," in *Handbook of Blockchain, Digital Finance, and Inclusion, Volume 1*, Elsevier, 2018, pp. 131–144.
- [19] J. Thomason *et al.*, "Blockchain—powering and empowering the poor in developing countries," in *Transforming climate finance and green investment with blockchains*, Elsevier, 2018, pp. 137–152.
- [20] T. Gulrez, "Strategic assessment of Islamic Fintech in GCC countries," *Fintech, digital currency and the future of Islamic finance: Strategic, regulatory and adoption issues in the Gulf Cooperation Council*, pp. 223–241, 2021.
- [21] A. Haines, "The Future of Global Tax Reporting through Automation," *Int'l Tax Rev.*, vol. 32, p. 6, 2021.
- [22] D. Rodima-Taylor and W. W. Grimes, "International remittance rails as infrastructures: Embeddedness, innovation and financial access in developing economies," *Rev Int Polit Econ*, vol. 26, no. 5, pp. 839–862, 2019.
- [23] P. Sironi, *FinTech innovation: from robo-advisors to goal based investing and gamification*. John Wiley & Sons, 2016.
- [24] M. Niforos, V. Ramachandran, and T. Rehermann, "Block Chain," 2017.
- [25] B. Patrickson, "What do blockchain technologies imply for digital creative industries?," *Creativity and Innovation Management*, vol. 30, no. 3, pp. 585–595, 2021.
- [26] B. M. Till, A. W. Peters, S. Afshar, and J. G. Meara, "From blockchain technology to global health equity: can cryptocurrencies finance universal health coverage?," *BMJ Glob Health*, vol. 2, no. 4, p. e000570, 2017.
- [27] I. H. Y. Chiu, "Fintech and disruptive business models in financial products, intermediation and markets-policy implications for financial regulators," *J. Tech. L. & Pol'y*, vol. 21, p. 55, 2016.
- [28] P. K. Ozili, "CBDC, Fintech and cryptocurrency for financial inclusion and financial stability," *Digital Policy, Regulation and Governance*, vol. 25, no. 1, pp. 40–57, 2022.
- [29] A. B. Sarin, "Behavioral Finance and Cryptocurrency Market," in *Revolutionizing Financial Services and Markets Through FinTech and Blockchain*, IGI Global, 2023, pp. 217–236.
- [30] O. Poyser, "Herding behavior in cryptocurrency markets," *arXiv preprint arXiv:1806.11348*, 2018.
- [31] E. Mokhtarian and A. Lindgren, "Rise of the crypto hedge fund: Operational issues and best practices for an emergent investment industry," *Stan. JL Bus. & Fin.*, vol. 23, p. 112, 2018.
- [32] M. D. He *et al.*, *Virtual currencies and beyond: initial considerations*. International Monetary Fund, 2016.
- [33] J. L. Bele, "Financial Scams, Frauds, and Threats in the Digital Age," *MODERN APPROACHES TO KNOWLEDGE MANAGEMENT DEVELOPMENT*, p. 39, 2020.
- [34] S. Corbet and D. J. Cumming, "The wild west of ICOs," in *Cryptocurrency and blockchain technology*, De Gruyter, 2020, pp. 113–130.

[35] B. Aliyu Buhari, M. Shuaibu, and S. Mungadi, "The Impact of Decentralized Non-Regulated Cryptocurrencies on Cyber Criminality," *Computing*, vol. 13, p. 30088, Apr. 2023.

[36] A. Brill and L. Keene, "Cryptocurrencies: The next generation of terrorist financing?," *Defence against terrorism review*, vol. 6, no. 1, pp. 7–30, 2014.

[37] M. Chawki, "Cybercrime and the Regulation of Cryptocurrencies," in *Advances in Information and Communication*, K. Arai, Ed., Cham: Springer International Publishing, 2022, pp. 694–713.

[38] M. Wendl, M. H. Doan, and R. Sassen, "The environmental impact of cryptocurrencies using proof of work and proof of stake consensus algorithms: A systematic review," *J Environ Manage*, vol. 326, p. 116530, 2023, doi: <https://doi.org/10.1016/j.jenvman.2022.116530>.

[39] D. Zhang, X. H. Chen, C. K. M. Lau, and B. Xu, "Implications of cryptocurrency energy usage on climate change," *Technol Forecast Soc Change*, vol. 187, p. 122219, 2023, doi: <https://doi.org/10.1016/j.techfore.2022.122219>.

[40] S. A. Sarkodie and P. A. Owusu, "Dataset on bitcoin carbon footprint and energy consumption," *Data Brief*, vol. 42, p. 108252, 2022, doi: <https://doi.org/10.1016/j.dib.2022.108252>.

[41] S. Erdogan, M. Y. Ahmed, and S. A. Sarkodie, "Analyzing asymmetric effects of cryptocurrency demand on environmental sustainability," *Environmental Science and Pollution Research*, vol. 29, no. 21, pp. 31723–31733, 2022, doi: [10.1007/s11356-021-17998-y](https://doi.org/10.1007/s11356-021-17998-y).

[42] M. Zachariadis, G. Hileman, and S. V. Scott, "Governance and control in distributed ledgers: Understanding the challenges facing blockchain technology in financial services," *Information and Organization*, vol. 29, no. 2, pp. 105–117, 2019, doi: <https://doi.org/10.1016/j.infoandorg.2019.03.001>.

[43] V. L. Lemieux, "Trusting records: is Blockchain technology the answer?," *Records Management Journal*, vol. 26, no. 2, pp. 110–139, Jan. 2016, doi: [10.1108/RMJ-12-2015-0042](https://doi.org/10.1108/RMJ-12-2015-0042).

[44] E. Ducas and A. Wilner, "The security and financial implications of blockchain technologies: Regulating emerging technologies in Canada," *International Journal*, vol. 72, no. 4, pp. 538–562, Dec. 2017, doi: [10.1177/0020702017741909](https://doi.org/10.1177/0020702017741909).

[45] D. Chuen, L. Yan, and Y. Wang, "A global perspective on central bank digital currency," *China Economic J*, vol. 14, pp. 1–16, Jan. 2021, doi: [10.1080/17538963.2020.1870279](https://doi.org/10.1080/17538963.2020.1870279).

[46] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, "Solutions to Scalability of Blockchain: A Survey," *IEEE Access*, vol. 8, pp. 16440–16455, 2020, doi: [10.1109/ACCESS.2020.2967218](https://doi.org/10.1109/ACCESS.2020.2967218).

[47] S. Zhang *et al.*, "Towards Green Metaverse Networking: Technologies, Advancements and Future Directions," *IEEE Netw*, pp. 1–10, 2023, doi: [10.1109/MNET.130.2200510](https://doi.org/10.1109/MNET.130.2200510).

[48] M. Gawdat, *Scary Smart: The Future of Artificial Intelligence and How You Can Save Our World*. Pan Macmillan, 2021. [Online]. Available: <https://books.google.co.in/books?id=QYpbzgEACAAJ>

Authors Profile:

Priyanka Verma

Associate professor, Department of Forensic Science, Chandigarh University

Debjit Mukherjee

Post Graduate, Department of Forensic Science, Chandigarh University

Bhavika Moza

Post Graduate, Department of Forensic Science, Chandigarh University