
Subal Ranjan Sahu, International Journal of Advanced Trends in Computer Applications (IJATCA) 

Special Issue 1 (1), July - 2019,  pp. 1-6 

ISSN: 2395-3519  

www.ijatca.com                                                                                        1 

 

 

International Journal of Advanced Trends in 

Computer Applications 
www.ijatca.com 

 

Parameter-uniform hybrid numerical scheme for 

singularly perturbed initial value problem 
1
Subal Ranjan Sahu, 

2
Jugal Mohapatra 

1
Department of Mathematics,  

National Institute of Technology,  

Rourkela, India-769008 
1
515ma1013@nitrkl.ac.in, 

2
jugal@nitrkl.ac.in 

 

Abstract: This paper deals with a singularly perturbed initial value problem which depends on a parameter. A 

hybrid scheme has been constructed by combining a second order cubic spline on the layer region and a midpoint 

upwind scheme on the smooth region. It is shown that the order of convergence of the proposed method is two in 

the discrete norm. Error bounds for the numerical solution and its numerical derivative are established. A 

numerical example is presented which support the theoretical results. 
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I. INTRODUCTION 
 

Consider the initial value problem (IVP):  
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Where, 10   , is a perturbation parameter, 


and   are given constant. )(xp , )(xq  and )(xg  are smooth 

function in ],0( X , with 
*)(0),(0   xqxp .

Taking the above assumptions into consideration, )(xy

has an exponential layer near .0x This type of model 

problem found in quantum mechanics, fluid dynamics 

and other applied areas (Farrell et. al.(2000); 

Amiraliyev et. al.(2010);  Kadalbajoo et. al.(2010);  

Rao et. al.(2012)). 

Amiraliyev et. al.(1999) proposed a fitted finite 

difference approximation on uniform mesh for IVP (1) 

which was first order convergent. Cen et al.
 
 proposed a 

hybrid scheme for IVP (1) on piecewise uniform 

Shishkin mesh. The difference equation has been 

solved for errors using Gronwall's inequality (Willett 

et. al. (1965)), they got almost second order 

convergence for the numerical solution and the scaled 

numerical derivatives. 

The main goal is to construct a robust numerical 

scheme for the approximate solution of IVP (1) and its 

derivatives. Motivated from (Cen et. al.(2017)), a fitted 

mesh approach has been developed to handle the IVP 

(1). Taking different behavior of the solution in to 

account, different types of layer-adapted meshes like 

Shishkin mesh (S mesh) and Bakhvalov-Shishkin mesh 

(B-S mesh) are constructed. Afterwards, we develop a 

hybrid scheme by combining the cubic spline 

approximation on the inner layer with the midpoint 

upwind approximation on the smooth layer (LinB 

(2009)). Since estimation for numerical derivatives are 

desirable in many applied field (Mohapatra et. 

al.(2009); Priyadharshin et. al. (2009); Zheng et. 

al.(2015)), we give error bound for the numerical 

derivatives. Here, denotes a generic positive constant 

independent of and the mesh parameter. 
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II. PROPERTIES OF THE SOLUTION 

AND ITS DERIVATIVES 
 

Lemma 2.1 The solution )(xy  and the derivatives of 

IVP (1) satisfies the following bounds: 
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Proof.  The idea of the proof is given in 
[5]

. 

We decompose the solution )(xy of the IVP (1) into 

smooth and layer components as: 

)()()( xvxuxy  . The smooth part  )(xu  is 

satisfies the following sets of problem: 
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(3)  

Here, 3210 ,,, uuuu
 respectively, the solution of the 

following problems: 
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(4)             

The singular components  )(xv  is satisfying the 

following problem: 
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(5)                   

Lemma 2.2The derivatives of smooth components 

)(xu l

 satisfy the following: 

,)( Cxu l 
.40  l                                                                                                     

(6)                

Proof. One can find a similar kind of proof in
 [6]

. 

Lemma 2.3The singular components )(xv and the 

derivatives 
)(xv l

 have the following estimates: 
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(8)                  

Proof.  The idea of the proof is given in (Cen et. al.). 

 

2.1. Cubic spline approximation 

     Consider the cubic spline approximation on a 

variable mesh 
 ,1......0 10  N

N xxx
and 

let 
.1 iii xxh
 for given values 

)(),......(),( 10 NxYxYxY
 of a function )(xy  on ,N

there exists a cubic spline function, )(xR  with 

following assumptions: 

(i) )(xR agree  with a  third degree polynomial  on each 

intervals
],[ 1 ii xx  , .,.......1 Ni   

(ii)
)()( 2 CxR
. 

(iii) 
)()( ii xYxR 
 for .,.......1 Ni   

Now for 
],[ 1 ii xxx 
, the cubic spline function is 

defined as follows: 
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where 
).('' ii xRS 

 Now from the elementary  

properties of the  spline, we have, 
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For obtaining second order approximation for the first 

derivative of )(xy  one can refer (Priyadharshin et. al. 

(2010)). Now for the IVP (1) consider the 

approximation: 
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for .1,  iij                                                  (10)                 

Substituting this in (9), we develop the linear systems, 
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III. THE DIFFERENCE SCHEME 

To approximate IVP (1), we introduce a hybrid scheme 

on a non-uniform mesh of N intervals .N  Now, 

define a transition parameter 
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which divide 
N  into two subdomains with 2/N  

equal subintervals.  Define a mesh generating function 
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points are given by    
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where, 
./ Niti    Let define the function 


, that is 

related to   with ,ln   and satisfies 1)0(   

and 
1)2/1(  N .  Then the characterizing function 


 

is given by 

         (S mesh), 

         (B-S mesh). 

 

3.1 Hybrid difference scheme 

In this scheme, we use the cubic spline approximation 

define in (11) in the fine mesh region and the midpoint 

upwind approximations on the coarse mesh  region of 
N . 
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Proposition 3.1 

 Let
y

and iY
be the solutions of IVP (1) and discrete 

problem (14 -15) respectively. Then, the parameter 

uniform estimate is given by: 
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Proposition 3.2  

Let 
y

and iY
 be the solutions of IVP (1) and discrete 

problem (14-15) respectively. Then, the error estimate 

for the scaled numerical derivatives is given as: 
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IV. NUMERICAL RESULTS AND 

DISCUSSIONS 
 

Example 4.1 Consider the IVP: 
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where )(xg is taken  in  such a way that 
2/21)( xexxxy 

 is exact solution . The error of 

the difference approximation is computed in the 

discrete maximum norm. The maximum point wise 

errors 
NE and the scaled errors of numerical derivatives  

ND  are defined by: 

 

 

 

 

 

where iU is obtained by the proposed methods. Then 

the corresponding rate of convergence are given by:
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Table 1 represents the maximum pointwise error and 

the corresponding rate for 41  e  and 81  e . 

Similarly, Table 2 displays the scaled error and the 

corresponding rate Dr . The results clearly indicate that 

the present scheme is uniformly convergence and of 

quadratic order.  For proper visualization of the rate of 

a convergence, the log log plots of the
NE and 

ND  

are shown in Figure 1. 

A singularly perturbed second order IVP is taken into 

consideration. We presented the hybrid scheme on 

Shishkin type meshes (S mesh and B-S mesh). The 

scheme proposed in this article is a combination of 

cubic spline approximation on the singular region and 

the midpoint upwind approximation on the smooth 

region. The proposed method generates a second order 
 -uniform convergence rate of the numerical solution 

and the scaled numerical derivatives. The efficacy of 

the proposed scheme can be easily seen from the 

numerical results and the approximation coincides with 

the theoretical results. 
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(b) Maximum scaled error 

Figure 1: Loglog plot for Example 4.1 

 

Table 1: 
NE  and Er  generated by the hybrid scheme for 

Example 4.1. 

N S mesh B-S mesh 

41  e  81  e  41  e  81  e  

332 1.0797e-2 

2.4748 

1.0797e-2 

2.4748 

7.9889e-4 

2.6732 

8.0394e-4 

2.6629 

664 3.0497e-3 

2.2184 

3.0497e-3 

2.2184 

2.0391e-4 

2.5678 

2.0617e-4 

2.5474 

1128 9.2248e-4 

2.0653 

9.2249e-4 

2.0665 

5.1092e-5 

2.5055 

5.2215e-5 

2.4657 

2256 2.9041e-4 

2.0031 

2.9022e-4 

2.0019 

1.2572e-5 

2.4877 

1.3138e-5 

2.4038 

5512 9.1725e-5 

1.9885 

9.1726e-5 

2.0359 

3.0046e-6 

2.5416 

3.2953e-6 

2.3558 

 

 

 

 

 

 

Table 2: 
ND  and Dr  generated by the hybrid scheme for 

Example 4.1. 

N S mesh B-S mesh 

41  e  81  e  41  e  81  e  

332 1.5617e-2 

1.5422 

1.5617e-2 

1.5422 

7.6177e-4 

2.5062 

7.6177e-4 

2.5062 

664 7.1034e-3 

1.6511 

7.1034e-3 

1.6511 

2.1174e-4 

2.4513 

2.1175e-4 

2.4503 

1128 2.9172e-3 

1.7480 

2.9173e-3 

1.7479 

5.6525e-5 

2.4115 

5.6525e-5 

2.4114 

2256 1.0968e-3 

1.8299 

1.0969e-3 

1.8300 

1.4661e-5 

2.3754 

1.4661e-5 

2.3754 

5512 3.8273e-4 

1.8927 

3.8273e-4 

1.8920 

3.7377e-6 

2.3413 

3.7378e-6 

2.3409 
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