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Abstract: This paper deals with a singularly perturbed initial value problem which depends on a parameter. A
hybrid scheme has been constructed by combining a second order cubic spline on the layer region and a midpoint
upwind scheme on the smooth region. It is shown that the order of convergence of the proposed method is two in
the discrete norm. Error bounds for the numerical solution and its numerical derivative are established. A
numerical example is presented which support the theoretical results.
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I. INTRODUCTION

Consider the initial value problem (I\VVP):

Ly(x) = &%y (x) +ep(x) y' (X) + 4(x)y(x) = g(x), x€Q=(0,X]

y(0) = 4, L,y(0)=y'(0) =21,
o (1)

Where, 0 <& <<1 is a perturbation parameter, 7 and 4 are given constant. P, 4(X) and 9 are smooth
function in @ X1 with 0 <@ = p(x), 0< B =<q(x) < B

Taking the above assumptions into consideration, y(X)  The main goal is to construct a robust numerical
scheme for the approximate solution of IVP (1) and its

i X=0.Thi
has an exponential layer near This type of model derivatives. Motivated from (Cen et. al.(2017)), a fitted

problem found in quantum mechanics, fluid dynamics
and other applied areas (Farrell et. al.(2000): mesh approach has been developed to handle the IVP

Amicliyes et l 2010 Kadaleioo et o o0y 11 T478 O b O e Sin o
Rao et. al.(2012)). ’ yp Y P

Shishkin mesh (S mesh) and Bakhvalov-Shishkin mesh
(B-S mesh) are constructed. Afterwards, we develop a
hybrid scheme by combining the cubic spline
approximation on the inner layer with the midpoint
upwind approximation on the smooth layer (LinB
(2009)). Since estimation for numerical derivatives are
desirable in many applied field (Mohapatra et.
al.(2009); Priyadharshin et. al. (2009); Zheng et.
al.(2015)), we give error bound for the numerical
derivatives. Here, denotes a generic positive constant
independent of and the mesh parameter.

Amiraliyev et. al.(1999) proposed a fitted finite
difference approximation on uniform mesh for IVP (1)
which was first order convergent. Cen et al. proposed a
hybrid scheme for IVP (1) on piecewise uniform
Shishkin mesh. The difference equation has been
solved for errors using Gronwall's inequality (Willett
et. al. (1965)), they got almost second order
convergence for the numerical solution and the scaled
numerical derivatives.
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Il. PROPERTIES OF THE SOLUTION
AND ITS DERIVATIVES

Lemma 2.1 The solution Y(X) and the derivatives of
IVP (1) satisfies the following bounds:

ly'x<c {¢+max t)|+ &’ max|g(t) + I| |dt}

0<t<x 0<t<x
2)

xeQ, 0<I<6

for all where

¢ =ln* +a(0)2> ~29(0)], j=max{0,1-2}.

Proof. The idea of the proof is given in !,

We decompose the solution Y(®) of the IVP (1) into
smooth and layer components as:

yO) =u(X) +Vv(X) ' The smooth part
satisfies the following sets of problem:
Lu(x) = g(x)
u(0) = u, (0) + &u, (0) + £°u, (0) + +&°u, (0)
u'(0) =u', (0) +au', (0) + £°u’, (0) + £°u’, (0)

u(x) s

®3)

Here, Ug, Uy, Uy, Uy respectively, the solution of the
following problems:
g(x)
(xX) ==——=
Ho a(x)’

u,(x) = L{<5Uo

a0 P(X)u, " (X)},

U,(X) = —feu, " p(x)u," (O},
q(x)

U () = —=—{eu, " p()U," ()}
q(x)

(4)

V(X) s satisfying the

The singular components
following problem:

Lv(x) =0,
v(0) = A —u(0),
v'(0) = 2 _u'(0).
&

®)

Lemma 2.2The derivatives of smooth components

|
u(x) satisfy the following:

H“I(X)HSC' 0<l<4.

(6)
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Proof. One can find a similar kind of proof in .
Lemma 2.3The singular componentsV(*)and the

|
derivatives (x) have the following estimates:

HVI (X)HSC(Es | +& Ieme/e, +€l| 7mX/25) O<| <5

@)

where
(p(0)—+/(p*(0) —4q(0)))/ 2, p?(0) > 4q(0),
m= p(0)/4, p*(0) = 4q(0),
p(0)/2, p?(0) < 4q(0).

(8)

Proof. The idea of the proof is given in (Cen et. al.).

2.1. Cubic spline approximation
Consider the cubic spline approximation on a

N iy _
variable mesh B {O =X <Xy <Xy =1 } and
let =X~ Xy for given values
Y 0D Y (), Y (X ) of a function Y(X) on Q,

there exists a cubic spline function, R(X)  with

following assumptions:

0) R(x) agree with a third degree polynomial on each

intervals[xi*l' X1 =1
(i) R0 <C2@)
R(Xi) = Y(Xi)

X€[X1.%]

(i)

Now for
defined as follows:

, the cubic spline function is

ot (x—x%;,)° s,

+[Y(xi1)—% SJ[%]
he o Y %)
{0

where S =R"(x). Now from
properties of the spline, we have,

ﬁsi—l h + h|+1 S h|+1 S = Y(Xi+1) _Y(Xi) _ Y(Xi)_Y(Xi—l)l

6 6 6 h h

i+1 i

R(x) =

the elementary

9)
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For obtaining second order approximation for the first

derivative of Y(X) one can refer (Priyadharshin et. al.
(2010)). Now for the IVP (1)
approximation:

&S, + p0)Y (%)) +a(x;)Y (x;) = 9(x;),

consider the
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j=iixl.

for (10)
Substituting this in (9), we develop the linear systems,
forl =L N -1,

Lo,Yi =17Y (%) + 1Y () +17Y (%,1) = G(x)

(11)
= hi 1 hi + 2hi+ hi+ hli
r = zqi—l+__u el e srl U
6c h, 6e(h +h.,) 3¢h, 3eh,
e (iehy) () () (0 -h?) (b +h)
- i hihy, 6eh; - 3ehhy, i 6eh, o
. hi, 1 hi2 h, (h, +h;)
C T TR T (h, +h )pi*1+3‘sh pi+65h(h +h )p”l’
Where i+1 i+1 i i+1 i+! i i i+1
G(x) =X g(x, 1) + (hy +h g (%) + DL g (x,.,)
and 1 2 i-1 1 i+1 i-1 2 i+1/7"
I1l. THE DIFFERENCE SCHEME Let Ly = 2g? (YM Y, Y, _Yilj
Mpli — -
To approximate 1\VVP (1), we introduce a hybrid scheme " hi + i Ny h,
on a non-uniform mesh of N intervals@" . Now, Y, =Y., v
A + Pisiso h +0ig,Y i =0
ozmin{—,—lnN} '
define a transition parameter 2'm , (13)

which divide Q" into two subdomains with N/2
equal subintervals. Define a mesh generating function
¢ with 6 (@ =0 gpg @/2) =INN Tpen the nodal
points are given by

Z;m), = O N2,
X, = )
1-(1—25|an(2('“_')], i = N/24T N.
8 N
(12)

where, Let define the function £ , that is
related to ¢ with ¢ = ~ N2 and satisfies £(0) =1
and 7/2)=N"
is given by

. Then the characterizing function X

(S mesh),
(B-S mesh).

g20n N)t’

x®) = {1— 2(1— N,

3.1 Hybrid difference scheme

In this scheme, we use the cubic spline approximation
define in (11) in the fine mesh region and the midpoint
upwind approximations on the coarse mesh region of
oV,

where, Yi:Y(Xi), Yi :(Yi—l+Yi)/2an

Piyj2 = P((Xiy +%;)/2) - similar for 92 ang Yz,

d

Thus, the hybrid
takes of the form:

finite approximation for IVP (1)

Ly :{LCuYi, 1gi<_.N/2,
LyYi N/2<i<N-L1.
(14)
and
LYy =2t 1 yg)_y
—(X; =X)+4(x —X%) ¢
(15)

Proposition 3.1

Let Y andYi be the solutions of IVP (1) and discrete
problem (14 -15) respectively. Then, the parameter
uniform estimate is given by:

Iy -vlenv Ny o

2
HYi i H <CN , (B-S mesh)
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Proposition 3.2

Let Y and Y be the solutions of IVP (1) and discrete
problem (14-15) respectively. Then, the error estimate
for the scaled numerical derivatives is given as:

A=Yy <CNTInNY?
i , (S mesh)
£ Yia o % Y'isar2| SCN 2
Nia , (B-S mesh)
V. NUMERICAL RESULTS AND

DISCUSSIONS

Example 4.1 Consider the IVP:

g2y (X) + &3+ xsin(x))y' (x)
+@A+e)y(x) =g(x), 0<x<1,

y(0) =2,y'(0) = 1—2i,
E

(16)

where 9 s taken in

_ _y2 X2 )
y(x)=1+x-x"+e is exact solution . The error of
the difference approximation is computed in the
discrete maximum norm. The maximum point wise

N . . .
errors E"and the scaled errors of numerical derivatives
N .
D" are defined by:

such a way that

EN = max|y(x,) Y],

1<i<N

where Yiis obtained by the proposed methods. Then
the corresponding rate of convergence are given by:

. INE" —InE*" . InD" —InD*"
® In(2INN/In2N)) °  In(2InN/In(2N))

Table 1 represents the maximum pointwise error and
the corresponding rate for £ =16—4 gng £ =1e—-8,
Similarly, Table 2 displays the scaled error and the

corresponding rate 'o. The results clearly indicate that
the present scheme is uniformly convergence and of
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quadratic order. For proper visualization of the rate of

a convergence, the log log plots of the E" and D"
are shown in Figure 1.

A singularly perturbed second order I\VVP is taken into
consideration. We presented the hybrid scheme on
Shishkin type meshes (S mesh and B-S mesh). The
scheme proposed in this article is a combination of
cubic spline approximation on the singular region and
the midpoint upwind approximation on the smooth
region. The proposed method generates a second order

¢ .uniform convergence rate of the numerical solution
and the scaled numerical derivatives. The efficacy of
the proposed scheme can be easily seen from the
numerical results and the approximation coincides with
the theoretical results.
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Figure 1: Loglog plot for Example 4.1
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Table1: E" and Te generated by the hybrid scheme for

Example 4.1.
N S mesh B-S mesh
e=le-4 | ¢=1-8 | e=1e—-4 | £6=1e-8
332 1.0797e-2 1.0797e-2 7.988%-4 8.0394e-4
2.4748 2.4748 2.6732 2.6629
664 3.0497e-3 3.0497e-3 2.0391e-4 2.0617e-4
2.2184 2.2184 2.5678 2.5474
1128 9.2248e-4 9.2249e-4 5.1092e-5 5.2215e-5
2.0653 2.0665 2.5055 2.4657
2256 2.9041e-4 2.9022e-4 1.2572e-5 1.3138e-5
2.0031 2.0019 24877 2.4038
5512 9.1725e-5 9.1726e-5 3.0046e-6 3.2953e-6
1.9885 2.0359 2.5416 2.3558
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Table 2: D™ and "o generated by the hybrid scheme for

Example 4.1.
N S mesh B-S mesh
e=le-4 | £=1-8 | e=1e—4 | £¢=1e-8
332 | 1.5617e-2 | 1.5617e-2 7.6177e-4 7.6177e-4
1.5422 1.5422 2.5062 2.5062
664 | 7.1034e-3 | 7.1034e-3 2.1174e-4 2.1175e-4
1.6511 1.6511 2.4513 2.4503
1128 | 2.9172e-3 | 2.9173e-3 5.6525¢e-5 5.6525e-5
1.7480 1.7479 2.4115 24114
2256 | 1.0968e-3 1.0969¢-3 1.4661e-5 1.4661e-5
1.8299 1.8300 2.3754 2.3754
5512 | 3.8273e-4 3.8273e-4 3.7377e-6 3.7378e-6
1.8927 1.8920 2.3413 2.3409
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