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Abstract: We deployed a numerical method to solve a twelfth order BVP’s in terms of finite element Galerkin
approach with the sextic B-splines as basis functions. The basis functions have been redefined into another set of
basis functions, governing approximate solution satisfies given boundary conditions. To know the efficiency of the
proposed numerical method, we have been examined the numerical scheme by applying this scheme on some
twelfth order linear and nonlinear BVP’s and these results compare with the exact solution available in the

literature.
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I. INTRODUCTION

A general form of linear twelfth order BVP is

Pz () + p, O (@) + p, 2 (1) + P, 2 (1) + P, ()27 (©) + ps (1) 27 (1)
+Ps (D2 (1) + P, (2 ©) + Py (2 (1) + Py (D27 (1) + Poo (DZ"(1) + P1a (D Z'(V)

+p12(t)2(t)=q(t), a<t<b

subject to boundary conditions

1)

2(a)=Ay, 2(0)=Cy, Z'(@)=A, Z(0)=C,, 2"(a) = A, 27(b) =C,,

z""(a) = A, 2(b) =C;, 2 (a)=A,, 29 (b)=C,,

2®(@)=A,, 29(b)=C,. )

where A;’s, Ci’s are finite real constants, pi(z)’s and q(t) € C([a, b]).

Practically, these kinds of BVP’s occur in the areas of
hydrodynamics and hydromagnetic stability and other
parts of applied sciences (Mathematics, Physics,...etc)
and engineering. The book by Chandrasekhar(1981)
explained in details, how it is modeled by twelfth order
BVP’s. In Agarwal (1986) book contains theorems on
the existence and uniqueness of these types of
problems and its solutions without any numerical
approximation.

In general, solving these kinds of problems for the
analytical solution is very difficult and one can solve
these problems in some special or rare cases only.
From a few years, many researchers have been
developed numerical schemes to get the approximate

solutions to these kinds of problems. To mention a few,
using finite difference (Twizell et. al., 1991; Twizell
and Boutayeb, 1994 ; Dijidejeli and Twizell, 1993)
developed numerical schemes to solve higher even
order differential equations, eigenvalue problems
arising in the thermal variability. Using spline twelve
and thirteen-degree polynomials, Twizell and Siddigi
(1997, 2006) developed a numerical scheme using
finite difference method for egs. (1)-(2). Some of the
numerical methods and semi-analytical methods
developed to solve these kinds of problems and some
of them are Differential transform method (Siraj-Ul
Islam et. al., 2009), Adomain decomposition method
(A. M. Wazwaz, 2009), homotopy-perurbation method
(Ravikanth and Aruna, 2009), Variational iteration
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method ( Ravikanth and Aruna, 2009; Aslam Noor,
and Mohyud-Din, 2008).

In the present paper, we aim is to develop a numerical
algorithm to solve the BVP mentioned in the above
form egs. (1) - (2) with the support of sextic B-splines
by the Galerkin method. To solve a huge number of
diversity of applications of both linear and nonlinear
BVP’s, the proposed method has been applied. The
nonlinear problems have been solved with the help of
the quasilinearization technique (Kalaba and Bellman,
1965). The books (Bers et. al., 1964; Lions and
Magenes, 1972; Mitchel and Wait, 1977) consisting of
validation of the Galerkin method.

I1. METHOD OF PROCEDURE
The sextic B-splines are defined in (Prenter, 1989;
Carl de-Boor, 2001; Schoenberg, 1966). We defined
the approximate solution of the equation egs. (1) - (2) is
z(t) as
n+2
Z(t)= Z aij ®)
= ®3)

where ¢ Sare the control points(nodal parameters),
BJ' (t)’s are sextic B-splines and these are piecewise
C°[a, b] functions on given domain and these are forms
a basis for spline polynomial space S¢([a, b]). Hence
z(t) is also piecewise C°[a, b] function on domain. If the
given boundary conditions eq. (2) are fulfilled by the
approximate solution then numerical scheme gives
more precise results. Thus, by making use of the sextic
basis functions and boundary conditions we will get a
new set of sextic basis functions. These functions will
satisfy boundary conditions. The remodified basis
functions are obtained from the following procedure.

We got the following equations by approximating
boundary conditions mentioned in eq. (2) with the help
of the approximation solution mentioned in eq. (3)
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A= z(a) = Z(to) = Zaij(to),

n+2

C,=2(b)=2(t,)= > a;B,(t,)

i @)
A=7()=2() = Y a;B)(,),
C=7(M)=7(t)= Y aBt)
i )
A, =2"(a) = 2"(t;) = Z o BI(L,),
—b)=2"(t)= Y a;BI(t)
j=n-3 (6)
A =2"(a) = 2"(t,) = Za B (t,),
) =2"(t) = S @B,
i @
A=29()=29(t) = 3B,
C=290)=29()= 3 @B (t,)
®)
AS = Z(S) (a) = Z(S) (to) =q, Bz(S) (to)
G = 2 (b)= z® t)=a,; Bn—3(5) (t,) (9)

%n-s 19 %n+2 from the above
- (9), we obtain the approximate

removing 3 10 % and
equations egs. (3)
solution z(t) as

Z(t):Wt(t)+nZ4ajI§j (t)

(10)
where
_ AW () )y, Co =W (t)
wt(t) =wty () + =5~ 0o (1) 2(t)+—U(4)3() U, ()
_ AWET () ¢y, Co—WEY (t)
Wi, (t) = wt, (t) + 59 () S, () + 59 (1) Sy ()
A3 Wt”!(t ) C Wt”!(t )
wt, () =wt, (t) + =————>~ : Ry(t) + —R;i’l(tn) R ()
A, —wt," (t,) C,—wt,"(t,)
Wi, (1) =wt, (t) + 2——2=22Q, () + 2—2—="2Q, (t
OOy 2O gy @Y
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wt, @ =wt () + 2 Wil p ) G Wat)

A C,
(T t)= —3 t)+ n+2 t
) Pt O O G B0 g Bl
and
(4)( )
S, (t)- N )S(t) j=2
U;(t)=1S,(t). j=3,..,n-4
S(t)—ms t), j=n-3
8,()=U, (1), AENICTTH R
ij ('[0) - Qu(t ) )
Ri(t)-——R(t), j=12 ) , j=0,12
R"(1) Q;(t)- Q" (tO)Qfl(t) 1=0
§;(t)=1R;(1), J=3..0-4 " R, (1) ={Q,(t), j=3..,n-4
R n (t ) ~ Qj!(tn) . ~ ~ ~
()—le(t) R.L@M),j= n—3,n—2., Q;(®) an(t),j_n 3,n-2,n-1.
Pi(t;) : _
Pj(t)—sz(tO) P,(t), j=-1012 B"(t)_BBJ:(ttOO)) B0,  j=-2-10.12
Q1) =4P), j=3..,n-4 P.(t)=1B, (1), j=3..n-4
P,(t)- PZ(E”)) P.),j=n-3n-2,n-1n. Bj(t)—Banz(t”n)Bmz(t),j=n—3,n—2,n—1,n,n+1.

Now, {Bi(t)’ J=3,...n—4} is the new-fangled basis to approximate solution space Sg([a, b]) and with these
basis functions and implementing the Galerkin method to (1), we get

tj[po 21+ POz O+ p, OO + POV V) + POV 1) + s 27 (1)

f

+Ps ()2 (1) + p, (1) 2 (1) + Py ()2 (1) + Py (1) 2" (1) + Py () 2"(1) + Po, (1) Z'(E)

tn
+Pp, (t)z(t)] I§>i (t)dt = Iq(t) B(t)dt for i=3,4,..., n—4.

o (11)
Applying integrating by parts to the first 7-terms (higher order derivative terms) of the above integral eq. (11) and

after applying conditions mentions in eq. (2), we obtained the system of linear equations and these were arranged
in the following form.

Aa=B (12)

where A=l
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—I{ 6(I%(t)B(t))B“”(t)+[ (pl(t)B(t))

(I04 (t)B, () + (IOs (t)B, (1) -

( P, (1)B, (1)) +
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o (Ps (1B, (1)

( P (1)B; (1)) + p, (1B, ()] BY(1)

+ Py (t)Bi (®)B{Xt) + py (1)B, (t)B}”(t)+ P (DB (1)B] (1) + Py (1)B;(1)B;(t)

+pp (1B (t)B, M}t for i=34,...,

B=[b;
b, = j{q(t)B (-

( P (1)B, (1)) +

-p; (t)Bi (t)1wt® (t)
— Py (1) B, ()WE'(t) — py, (1) B, (D) w(t) Jait, for

( P, (1)B; (1) -

a=lega,..0n ]

and

111. SOLUTION
The matrix A consisting integral element is in the

n-1
> N

I, = j:“ w, (6w, (£) X (t)dt

form k=0 where k and
Wi (t), Wi ® are the new-fangled basis functions or
their derivatives. The integral element =0 if
(ts b0 (tj—S’tj+4) Nt t,)=9 . To solve

integral element i in the above form, we applied
guadrature rule of Gauss-Legendre with seven point.

Thus, we get thirteen diagonal band stiffness matrix A .

We solve obtain system Aa =B for unknown control

_ T
points (nodal parameters) a=lxa,..a.,l with
help of band matrix solution package.

IV. NUMERICAL RESULTS

We are solving the twelfth order BVP by the proposed
numerical method to know its efficiency. In particular,
we have applied the proposed numerical method on
linear and nonlinear BVP’s. The obtained approximate
solutions by the proposed method compared with the
exact solutions and these results presented in the
tabular forms. We define max norm for computing
error e to the each example and it is defined as

llell.=Max]e, |

I<i<n , Where absolutely error (A.E) given

n-4; j= 3,4,...,

(po (0B, (t)wt® (1) +[——(p1(t)B (1) +

( ps(1)B, (1)) 5

— Py (1)B, (t)wt® (t)— P (1)B, (t)wt”'(t) ~ Py (1)B (wt"(t)
i=34,..,n-4

n-4. (13)

5 (P(V) B, (1))

(Pe(t)B (1))

(14)

byl e =lY -y |, here Yi , Yi are exact and numerical

solutions respectively at knot (grid point) X=X

Example 1: The linear BVP is given by

7" —7" 417 =—(120+ 20t —t* +t%)e", O<t<l1
(15)
subject to 2(0)=2)=0,7(0)=1 ') = e
2"(0)=0, z"(1)=-4e
2"(0)=-3, z"'(1)=-9e

2(0)=-8, 2 (1) =—16e,
2®(0) = -15, z® (1) = —25e.

The exact solution of the above differential equation is
z =t (1-t) e"

To know the efficiency of this numerical scheme, the
given domain is parted into ten equal subdomains by
taking step size h=1/10 and applied on it. In the
following Table 1 presented obtained numerical
results to this problem eq. (15) and 1.800060x10” is
the error in the above example by the proposed method.

Example 2: The nonlinear BVP is given by
1

Z(12) 1|[eflzz _ (1+2t)12 ]’ 0<t< e§ -1
(16)
3 1
Z(e3 _1) = ’
subject to 2(0) =0, 3" 7'(0)=1
1 -1 1 -2

Z'(e? -1 =e?, z/(0)=-1, z"(e3-1)=—e?,
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1
7"(e® -1 =2e,
L -4
7 (e3-1)=—6e?,

2"(0) =2, 72 (0) = -6,

2®)(0) = 24,
-5

1
2 (e3 1) =24e3 .

202, —12x1lle Pz =11[e "0 (1-127,,) ~

1

subject to
1 -2

Z(’:1+1) 0)=-1, Z('r'm) (e*-1)=-e3
1 4

2(4)(n+1) 0)=-6, 2., (e3-1)=—6e3,

th

here (n+1) approximation for 2(t) s 200, The
given domain is parted into ten equal subdomains by
taking step size h=1/10 and we have been solved a set
of linear problems eq. (17) in a sequence by the
proposed method. The Table 2 present numerical
results of eq. (16) which are obtained by this numerical
method and 6.958842x10° is the error in the above
example by the proposed numerical method.

Table 1: Numerical results for Examplel

X A.E.
0.1 3.278255E-07
0.2 6.407499E-07
0.3 5.364418E-07
0.4 7.092953E-06
0.5 1.800060E-05
0.6 1.427531E-05
0.7 7.092953E-06
0.8 2.652407E-06
0.9 8.940697E-06

Table 2: Numerical results for Example 2

X A.E.
3.956125E-02 | 6.072223E-07

2 (€3 -1 = 1 3 3
Z(”+1) (O) = 0’ () B 3 ’ Z('n+1) (O) :1’ Z(’n+l) (e3 _1) =e?d ’

We are demonstrated introduced a numerical algorithm
for solving twelfth order BVP’s with help of sextic B-

7.912249E-02

1.192093E-07

1.186837E-01

2.980232E-07

1.582450E-01

4.217029E-06

1.978062E-01

3.293157E-06

2.373675E-01

8.493662E-07

2.769287E-01

1.576543E-05

3.164900E-01

6.958842E-06

3.560512E-01

2.473593E-06

V. CONCLUSIONS
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and z(t)=In(1+t) is the solution of the (16).

The quasilinearization technique [13] generates the
sequence of linear BVP’s to the nonlinear BVP(16) as

1 n=0123.

-1

1
 Zy(0)=2, 7y (€3 -1 =27,
1 -5

2%y (0) =24, 29,y (e% ~1) = 24e .

spline as functions in terms of the Galerkin approach
and applied on a few problems. To get a more
approximate solution, basis functions changed into
another set of new basis functions and these are
vanishes on the boundary where eqn (2) prescribed.
The error in the numerical results which was obtained
by the deployed numerical scheme is too small. The
asset of the established numerical scheme is easy to
solve applications, simple, accuracy, and efficiency.

Conflict of Interest

Both the authors have equal contribution in this work
and it is declared that there is no conflict of interest for
this publication.

Acknowledgment

The authors express their sincere gratitude to the
referees for their valuable suggestions towards the
improvement of the paper.

References

[1] Agarwal, R. P. (1986). Boundary value problems for
Higher Order Differential Equations. World Scientific,
Singapore.

[2] Bers, L., John, F., & Schecheter,
differential equations. John Wiley Inter
York.

[3] Boutayeb, A., & Twizell, E. H. (1991). Finite difference
methods for twelfth order boundary value problems. Journal
of Computational and Applied Mathematics, 35, 133-138.

[4] Carl de-Boor. (2001). A pratical guide to splines.
Springer-Verlag.

[5] Chandra sekhar, S. (1981). Hydrodynamics and
Hydromagnetic Stability. New York:Dover.

[6] Dijidejeli, K., & Twizell, E. (1993). Numerical methods
for special nonlinear boundary value problems of order
2m. Journal of Computational and Applied Mathematics,
47(1), 35-45.

[7] Kalaba, R. E., & Bellman, R. E. (1965).
Quasilinearzation and nonlinear boundary value problems.
American Elsevier, New York.

M. (1964). Partial
Science, New

www.ijatca.com 64



Sreenivasulu Ballem, International Journal of Advanced Trends in Computer Applications (IJATCA)

[8] Lions, J. L., & Magenes, E. (1972). Non-homogeneous
boundary value problem and applications. Springer-
Verlag, Berlin.

[9] Mitchel, A. R., & Wait, R. (1977). The finite element
method in partial differential equations. John Wiley and
Sons, London.

[10] Muhammad Aslam Noor., & Syed Tauseef Mohyud-
Din. (2008). Solutions of twelfth order boundary value
problems using Variational Iteration Technique. Journal of
Applied Mathematics and Computing, 28(1-2), 123-131.

[11] Prenter, P. M. (1989). Splines and variational methods.
John-Wiley and Sons, New York.

[12] Ravikanth, A. V. S., & Aruna, K. (2009). He's
homotopy-perurbation method for solving higher order
boundary value problems. Chaos, Solitons and Fractals,
41(4), 1905-1905.

[13] Ravikanth, A. V. S., & Aruna, K. (2009). Variational
iteration method for twelfth order Boundary value problems.
Computers and Mathematics with Applications, 58(11-12),
2360-2364.

[14] Schoenberg, 1. J. (1966). On spline functions, MRC
Report 625, University of Wisconsin.

Special Issue 1 (1), July - 2019, pp. 60-65
ISSN: 2395-3519

[15] Shahid, S. Siddigi.,, & Ghazala Akram. (2006).
Solutions of twelfth order boundary value problems using the
thirteen degree spline. Applied Mathematics and
Computation, 182(2), 1443-1453.

[16] Shahid, S. Siddigi., & Twizell E. H. (1997). Spline
solution of linear twelfth-order boundary value problems.
Journal of Computational and Applied Mathematics, 78(2),
371-390.

[17] Siraj-Ul Islam., Sirajul Hag., & Javid Ali. (2009).
Numerical solution of special 12th-order boundary value
problems  using  differential  transform method.
Communications in Nonlinear Science and Numerical
Simulation, 14(4), 1132-1138.

[18] Twizell, E. H., & Boutayeb, A. (1994). Numerical
methods for  eighth, tenth and twelfth order eigenvalue
problems arising in thermal instability. Advances in
Computational Mathematics, 2(4), 407-436.

[19] Wazwaz, A. M. (2000). The Modified Adomian
Decomposition Method for solving linear and nonlinear
boundary value problems of tenth order and twelfth-order.
International Journal of Nonlinear Sciences and Numerical
Simulation, 1(1), 17-24.

www.ijatca.com 65



