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Abstract: This work deals with a novel numerical technique for similarity analysis of the effect of magnetic field 

on free convection in micropolar fluid about a vertical strip in the existence of mixed thermal boundary conditions 

and non-uniform wall concentration boundary conditions. The governing boundary layer equations of the physics 

of the present problem are cast into coupled nonlinear ordinary differential equations using the Lie Group point 

transformations. These resulted equations engaging in 𝒎 which speculates the values 𝒛𝒆𝒓𝒐, 𝒐𝒏𝒆 and 𝒊𝒏𝒇𝒊𝒏𝒊𝒕𝒚 

leads to the prescriptive temperature case, prescriptive heat flux case and radiation boundary conditions case at 

wall, has been solved using the novel numerical technique, paired quasi-linearisation method (PQLM). The results 

obtained are corroborated and are establish to be matched with earlier works. 
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I. INTRODUCTION 
 

(Sparrow and Gregg, 1956) have pioneered the problem 

of the convective mechanism of heat transfer through 

heated surface of a vertical plate. Later a great deal of 

attention has been drawn by many researchers on the 

problem of free convection next to heated vertical 

surface. These prior analyses of flow of the boundary–

layer of free-convection along a surface which is heated 

have simulated under either prescriptive temperature or 

heat flux on the wall conditions. The problem of free 

convection has not acknowledged abundant 

consideration when the surface exposes to a mixed 

thermal boundary condition. As a result of the small 

difference in the temperature between the solid surface 

and the medium within the vicinity of the surface, the 

radiation type mechanism of heat transfer takes place 

from surface to the medium. This radiation heat 

transfer at the boundary of the plate and medium is 

known as the radiation boundary condition. In the 

present work, for the case m , the mixed thermal 

boundary condition reduces to the RBC. (Ramanaiah 

and Malarvizhi, 1992) have been studied the convective 

flow on the wedge surface as well as on the surface of a 

cone for the case of radiation type thermal boundary 

condition. (Ece, 2005) investigated the transverse 

magnetic effect on the flow of convective laminar 

boundary – layer under the radiation type thermal 

boundary condition. (Cheng, 2009) studied the steady 

natural convection in porous media along a downward 

pointing vertical cone submerged in the non-Newtonian 

power–law fluid subjected to the mixed thermal 

boundary condition. The intent of the present work is to 

acquire profiles of velocity, microrotation, temperature 

and concentration though the similarity solutions under 

the mixed thermal boundary condition. 

 

II. MATHEMATICAL 

FORMULATION 
 

Grant a free convective, incompressible and steady 

micropolar fluid along a vertical plate. Fix the vertical 

plate along the x axis and consider the 
y

axis 

normal to the plate. T
is the ambient temperature and 

C
is the ambient concentration. The equations of the 

physics of the present geometry after employing the 

assumption of laminar boundary-layer flow along with 

the approximation of Boussinesq, are: 
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whereu and v are the components of velocity along x

and y directions respectively,  is the microrotation 

component, 
*g
is the gravitational acceleration, T is 

the dimensional temperature, C is the dimensional 

concentration, coefficients of expansions of thermal 

and solutal are given by T  and C ,  is the dynamic 

viscosity coefficient of the fluid,  stands for vortex 

viscosity,  is the spin-gradient viscosity,  denotes 

the permeability of the magnetic of the fluid,

represents the viscosity of kinematic,  is the thermal 

diffusivity, D is the molecular diffusivity. We consider 

the assumption that 
  j2/  which is 

mentioned in the work of many recent authors. This 

assumption is invoked to allow the field of equations 

predicts the correct behaviour in the limiting case when 

the microstructure effects become negligible and the 

total spin   reduces to the angular velocity. The 

boundary conditions are:  
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The generalized form of the mixed thermal boundary 

condition on the surface of the vertical plate 
0y

is 

assumed to be: 
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where, the subscripts w and indicates the conditions 

at wall and at the outer edge of the boundary layer, 

respectively. 

 

 

III. METHOD OF SOLUTION 
 

Introducing the following non-dimensional variables  
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and the stream function 


 through 
y

u







and x
v




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

in to the Eqs. (1) - (5) and (6) - (7) we get 
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where K is the coupling parameter, 

   TCB TC  
denotes the buoyancy term, 

   GrLBM 232

0 
 is the magnetic parameter 

Pr is the Prandtl number and DSc   is the 

Schmidt number. The transformed boundary conditions 

are 
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where 
     xaxaxb 200 

 and 
     xaxaxb 211  . 

To compose a solution of the similarity type, these 

 xb0  and 
 xb1 must be constants and they are 

denoted to as 0b
and 1b . For disposed values of the 

constants Tb ,0 and 1b the temperature T of the 

reference may be chosen to satisfy the equation without 

any loss of generality, 
  010

45

1  TbTb
. By 

defining   45

1 Tbm  , the thermal boundary 

condition at 
0y  𝑦 = 0  can be written as 

 

      10,0,1  xmxm           (15) 

 

IV. SIMILARITY SOLUTIONS VIA 

LIE GROUP ANALYSIS 
 

We now introduce the one-parameter scaling group of 

transformations which is a simplified form of Lie group 

transformation 
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where 654321 ,,,,,  are transformation parameters and is a small parameter. Eqs. (9) – (12) and 

boundary conditions (13) – (15) are invariant under the point transformations (16), and reduce to 
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and the associated boundary conditions become 
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and the mixed thermal boundary condition at the surface reduces to 
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Since the group transformations (16) keep the system invariant, hence the relations among the parameters from the 

Equations (17) – (20) is as below 
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These relations give 431    & 652 0   , so the infinitesimal transformations reduces to point 

transformations in one parameter as follows 
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After expanding the Lie group of point transformations in one parameter using the Taylor's series in powers of 𝜀 

by considering the terms up to  0 , we get 
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The corresponding characteristic equations are given by 
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The self similar solutions of characteristic equations (26) give the similarity transformations as
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The boundary conditions (21) and (22) in terms of  ,,, gf  now get transformed into  

 

  asgfatgff 0,0,0,0,01,0,0,0           (31) 

 

and the mixed thermal condition at 0 is given by 
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      1001   mm                                                (32) 

 

The following cases of mixed thermal boundary 

condition are of special interest: Case (a): Variable 

Wall Temperature (VWT): If  xTT w  at 0y , 

where   m

w TxTxT   gives 0m  thus mixed 

thermal boundary condition reduces to the form

  10  . Case (b): Variable Wall Heat Flux (VWHF): 

For this case, the variable wall heat flux condition
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 , gives 1m , hence, the mixed thermal 

boundary condition reduces to   10  . Case(c): 

Radiation Boundary Condition (RBC): At the wall i.e., 

at 0y , radiative boundary condition
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V. SKIN-FRICTION AND WALL 

COUPLE STRESS 
The non-dimensional skin friction fC  and wall couple 

stress wM are given by 
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VI. RESULTS AND DISCUSSION 
 

Similarity analysis of free-convection boundary-layer 

flow about a vertical plate embedded in a micropolar 

fluid under mixed thermal boundary conditions in the 

presence of a transverse magnetic field using Lie group 

point transformations is studied. Using the Lie group 

point transformations on the governing equations result 

in a set of coupled second-order non-linear differential 

equations Eqs. (27) – (30) for       ,, gf  and 

   along with the boundary conditions Eqs. (31) and 

(32). These equations (27) – (30) were solved 

numerically for the radiation boundary condition 

(RBC) case  m , by employing the local 

linearisation method (Motsa, 2013) which linearise the 

equations then apply the spectral collocation method 

for discretization and subsequent solution. We remark 

that the choice of linearisation method is influenced by 

the wall temperature conditions under investigation. It 

was observed that the local linearization method (LLM) 

is applicable for the variable wall temperature and 

variable wall heat flux condition. Applying the LLM on 

the radiation boundary condition gives only the trivial 

solution 0 for temperature which is not meaningful 

physically. The non-trivial solution can be obtained by 

linearising the momentum and energy equations as a 

coupled pair of equations with unknown functions f

and  at any level of iteration. Below, we give the 

development of the iteration scheme used for the 

generation of results under the different wall 

temperature conditions. The derivation of the LLM 

scheme starts with writing the system of ODEs in 

compact operator form as 

 

     
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,0,0

43

21









PT

GF
           (33) 

 

where 321 ,,   and 4 are non-linear operators 

that denote equation (27 – 30) respectively, and 

PTGF ,,,  are defined as 
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The assumption made in presenting the governing 

equations in the form (33) is that at any iteration level 

the dominant unknown functions are the ones 

corresponding to the term with the highest derivative in 

each equation. Linearising the first equation by 

applying the Taylor series expansion of 1  about 

some previous approximation of the solution denoted 

by rf , gives 

 

       
11

0

111

1

111

2

1111 RfafafafK rrrr     

        (34) 

  0,0,0 111   rrr fff      as         

     (35) 

 

where, 
 

rfa 2

11 , 
    ,,2 0

11

1

11 rr faMfa 

 21 rrrrrr fffBgKR   .  

In the above equation 1r  and r  denote the current 

and previous iteration levels. It is worth noting that in 

view of the assumption that the solutions for ,g  and 

  are known at the previous iteration level the solution 
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for f  can be obtained by solving (34) and (35) 

independently. The rest iteration schemes derived from 

the others equations are given by 

 

      




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2
1 1121
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221

1

221                    (36) 
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1

331               (37) 

        
  asRaa

Sc
rrrrr 0,10,

1
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0
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1
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The coefficients are defined as  
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To solve the linearised system of equations (34 – 38) 

we use the standard spectral collocation method that 

transforms the continuous derivatives to the matrix 

vector products at N selected collocation points 

 ,cos Njj    according to the definition 

 

    
N

k kkjj NjDf ....,,2,1,0,,         

                         (39) 

 

The use of (39) leads to 

FDFF,DFDF,F
32          (40) 

 

where D is the scaled differentiation matrix whose 

entries are defined in (Canuto et al., 1988) and 

      TNfff  ...,,,F 10 . Using equation (40) on 

the linearized equations (34 – 38) gives  
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To analyze the results for the present investigation 

under the radiation boundary condition (case(c)) 

m case, the values of  0f   and  0  were 

given in the Table 1 for BMK  0 and 10Pr . 

These values compared with the results given by 

Buyuk and Ece[7] for free convection in the absence of 

magnetic field were found to be in good agreement. 

 

For the case (c), i.e., radiation boundary condition 

(RBC) case the Figs.1(a)–1(d)  depict the variation of 

coupling number  K  on the profiles of velocity, 

microrotation, temperature and concentration with . 

As for the consideration of the fluid model, the 

coupling number K  characterised as a result of the 

coupling of linear and rotational motion arising from 

the micromotion of the fluid molecules. Hence, 

K signifies the coupling between the 

Newtonian and rotational viscosities. The effect of 

microstructure becomes significant for the increasing 

values of K while the individuality of the substructure 

is much less pronounced for the decreasing values of

K . We can see that in the limiting case of 0K i.e.,

0 , the micropolarity behaviour of the fluid 

vanishes and the fluid behaves as nonpolar fluid, and 

this leads to the case of viscous fluid. It is observed 

from Fig.1 (a) that as the value of K increases there is a 

asymptotical decrease in the velocity. From 0K
case i.e., the case of viscous to the non-viscous case 

there is a decrease in velocity. From Fig.1(b) it is 

evident that, at the wall there is a decrease in the 

component of microrotation. With the increment values 

of K the microrotation parameter increases in the 

ambient medium. As 0 , i.e., 0K , the Eq. (3) 

becomes uncoupled with Eqs. (1) and (2) and they 

reduce to the equations of viscous fluid flow. It is very 

interesting to notice from Fig.1(c) that the temperature 

increases with the increasing values of coupling 

number. This is because of the decrease in fluid 

velocity, which causes to  
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Figure 1: Velocity, microrotaton, temperature and concentration profiles for different values of K . 

 

decrease the replacement of hot fluid chunks near the 

plate by cold fluid chunks. Same trend can be observed 

in Fig.1 (d) that from the case of non-Newtonian to the 

case of Newtonian concentration increases.  

                                                                                                                                   

    
(a) 

        
(b) 

Figure 2: Profiles of heat and mass transfer rates as a 

function of K for different values of magnetic parameter

 M . 

Figs. 2(a) and 2(b) depict that the effect of coupling 

number  N  on heat transfer rate and mass transfer 

rate, for different M values. From the Figs. 2(a) and 

2(b) it is observed that both the heat and mass transfer 

rates decrease for the increasing values of the magnetic 

parameter. This is because of the resistance increased 

between the fluid layers as a result of transverse 

magnetic field, which leads to Lorentz force. This leads 

to slow down the mechanism of replacement of hot 

fluid at the surface of the plate by the cold fluid chunks 

away from the plate. Hence the heat and mass transfer 

rates decrease as M increases. 

 
Table 1 
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