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Abstract: This work deals with a novel numerical technique for similarity analysis of the effect of magnetic field
on free convection in micropolar fluid about a vertical strip in the existence of mixed thermal boundary conditions
and non-uniform wall concentration boundary conditions. The governing boundary layer equations of the physics
of the present problem are cast into coupled nonlinear ordinary differential equations using the Lie Group point
transformations. These resulted equations engaging in m which speculates the values zero,one and infinity
leads to the prescriptive temperature case, prescriptive heat flux case and radiation boundary conditions case at
wall, has been solved using the novel numerical technique, paired quasi-linearisation method (PQLM). The results
obtained are corroborated and are establish to be matched with earlier works.
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I. INTRODUCTION

(Sparrow and Gregg, 1956) have pioneered the problem
of the convective mechanism of heat transfer through
heated surface of a vertical plate. Later a great deal of
attention has been drawn by many researchers on the
problem of free convection next to heated vertical
surface. These prior analyses of flow of the boundary—
layer of free-convection along a surface which is heated
have simulated under either prescriptive temperature or
heat flux on the wall conditions. The problem of free
convection has not acknowledged abundant
consideration when the surface exposes to a mixed
thermal boundary condition. As a result of the small
difference in the temperature between the solid surface
and the medium within the vicinity of the surface, the
radiation type mechanism of heat transfer takes place
from surface to the medium. This radiation heat
transfer at the boundary of the plate and medium is
known as the radiation boundary condition. In the
present work, for the case M = % the mixed thermal
boundary condition reduces to the RBC. (Ramanaiah
and Malarvizhi, 1992) have been studied the convective
flow on the wedge surface as well as on the surface of a
cone for the case of radiation type thermal boundary

condition. (Ece, 2005) investigated the transverse
magnetic effect on the flow of convective laminar
boundary — layer under the radiation type thermal
boundary condition. (Cheng, 2009) studied the steady
natural convection in porous media along a downward
pointing vertical cone submerged in the non-Newtonian
power—law fluid subjected to the mixed thermal
boundary condition. The intent of the present work is to
acquire profiles of velocity, microrotation, temperature
and concentration though the similarity solutions under
the mixed thermal boundary condition.

1. MATHEMATICAL
FORMULATION

Grant a free convective, incompressible and steady
micropolar fluid along a vertical plate. Fix the vertical

plate along the X—axis and consider the Y ~axis

T

normal to the plate. "« is the ambient temperature and

C. is the ambient concentration. The equations of the
physics of the present geometry after employing the
assumption of laminar boundary-layer flow along with
the approximation of Boussinesq, are:
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whereU andV are the components of velocity along X
and Y directions respectively, @ s the microrotation

Tis
the dimensional temperature,cis the dimensional
concentration, coefficients of expansions of thermal

component, 9 s the gravitational acceleration,

and solutal are given by pr and Be , His the dynamic
viscosity coefficient of the fluid, & stands for vortex
viscosity,” is the spin-gradient viscosity, O denotes
the permeability of the magnetic of the fluid,"
represents the viscosity of kinematic, ¢ is the thermal
diffusivity, D is the molecular diffusivity. We consider

the assumption that 7/=(ﬂ+’(/2)]which is
mentioned in the work of many recent authors. This
assumption is invoked to allow the field of equations
predicts the correct behaviour in the limiting case when
the microstructure effects become negligible and the

total spin @ reduces to the angular velocity. The
boundary conditions are:

0=0, v=0, ®=0, C=C,(x) at y=0

00, >0, T>T, Co»C,(x) asy—ow
(6)

The generalized form of the mixed thermal boundary

condition on the surface of the vertical plate y=0 is

assumed to be: B
N\ _\OT _
ao(x)(T -T, )y:o - ai(x)_ =a, (X)
%y @)

where, the subscripts W and® indicates the conditions
at wall and at the outer edge of the boundary layer,
respectively.

1. METHOD OF SOLUTION

Introducing the following non-dimensional variables

X Y ~ 14 oL uL ol? g B ATL
Xx==,y==Gr'*,u= V= , 0= , Gr = ~——"——,

L y L v Gr¥2 v Gr¥4 @ vGr¥* %
0= _T__Tw  XAT =T (X)-T,, 4= _C__Cw , XAC =C,(X)-C,

T.(X)-T, C.(x)-C, ®

u= a—l/j v :_a_l//
and the stream function ¥ through oy and OX in to the Egs. (1) - (5) and (6) - (7) we get
2 2 3
6_1//8_1//_8_1//6_1/2/=(1+ K)a_‘/;Jr Ka_a)+x(9+ B¢)_Ma_‘//
oy oxoy  ox oy oy o )
2 2

v oo _0v oo _aq,K/2)02 k| 2w+ Y
oy OX Ox oy (10)
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o’ (11)
0

oy (12)

Pr=v/ais the prandtl number and S¢="/D is the
Schmidt number. The transformed boundary conditions
are

where K=x/u is the coupling parameter,

B= ('BCAC )/(ﬂT AT)denotes the buoyancy term,
_ 213 2

M _(OBO L )/(pv Gr) is the magnetic parameter

W _o, Y _0, w=0, b (X)ATA(x, 0)—h, (X\AT )*#'(x, 0)=1, ¢(x, 0)=0
oy oX aty =0 (13)
oy
——>0, w—0, 60, p—>0
as Y 0 (14)

. m= 5/4
where ( ) ( )/a ( ) and bl(x):ai()—()/az()—(). defining bl(AT)  the

L. y:O _ .
To compose a solution of the similarity type, these condition at y = 0 can be written as
by (x) and bl(X)must be constants and they are  (1—m)d(x, 0) — m&(x,0)=1 (15)
denoted to as by and bl. For disposed values of the
b,, T

constants ©and by the temperature T of the
reference may be chosen to satisfy the equation without

b (AT )" +b,AT -1=0

thermal  boundary

IV. SIMILARITY SOLUTIONS VIA
LIE GROUP ANALYSIS

. By  We now introduce the one-parameter scaling group of
transformations which is a simplified form of Lie group
transformation

any loss of generality,

son sory

e )/sze ’ 9:ye , l/’) — l//ega3 a) anu :6ega5 , &:@gae (16)
wherea,, a,, o, a,, as, agare transformation parameters and ¢ is a small parameter. Egs. (9) — (12) and

boundary conditions (13) — (15) are invariant under the point transformations (16), and reduce to

A

A 2 A A 2 A 3 2
eg(a1+2a2—2a3)(a_l// a V/ _a_l// a V/) — (1+ K)es(3a2—a3 a l// + Keg(az a4) aa)

~ AC AN o A2
oy %9 X oY oy’ ay (17)
)’z(eg(aras )é+ Beg(aras)é;)_ Meg(ar%) al//
oy
A A A A 2 A
es(a1+az_aa—0{4) a_l/’\/a_C’!\) _ a_l/,\/a_?) — [1+ Ejeg(zaz_a” aTaz) _
oy % 0%k oY 2 oy
. (18)
K(zeﬂué‘) +e£(7—a2*a3) 891/2/j
es(az—a3—a5) R al/,\/ ﬁ _ )’Za_!r/’\lﬁ + é alr/’\/ — eg(—a1+2a2—a5) i R a - (19)
oy oX ox oy oy Pr
es(az—a3—a6) L al{/ % _ )’Za_‘/’\/% +¢? al{/ — ef(—aﬁ'zaz—ae) i R o ~ (20)
oy 68 ok oy oy Sc
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and the associated boundary conditions become

W 0% 0, 5=0, e §=0 at §e* =0

y oX

syA (21)
V{—)O,cf)—)O,é—)O,&—)O as ye " —»ow

and the mixed thermal boundary condition at the surface reduces to

(1—m)e 0 —me*“ )’ =1 (22)

Since the group transformations (16) keep the system invariant, hence the relations among the parameters from the
Equations (17) — (20) is as below

o +20, 20, =30, -0, =0, — 0, =0 — 0l =Q) —Olg =y — Ol
o to,—o,—a,=2a,—0a,=—a, =20, —a, (23)

o, —Qy— s =—0y + 20, — L, o, — 03— Qg =—0, + 20, — 0

These relations give o, =a; =0, & a,=0=a, =ag, so the infinitesimal transformations reduces to point
transformations in one parameter as follows

T R=Xe", Y=V, ¥ =y, =™, 0=0, §=¢ (24)

After expanding the Lie group of point transformations in one parameter using the Taylor's series in powers of ¢
by considering the terms up to O(g) , We get

X—X=Xeay, Y-yY=0, v -y =yer,, 0—0=wea,, 0-6=0, g—p=0 (25)
The corresponding characteristic equations are given by

dx _dy_dy _do _do_d¢

(26)
Xxey 0 wo, way 0 O

The self similar solutions of characteristic equations (26) give the similarity transformations as
J=n, w=3%(n), d=%9(n), 0=0(n), =4¢(n), these reduce the Eqs. (17) - (20) into

@+ K)F"—(f'Y + ff"+Kg'+6+Bg—Mf'=0 (27)
(1+§jg”+ fg'—gf'—K(2g+ f")=0 (28)
%eu - 9=0 (29)
1 " !/ )

The boundary conditions (21) and (22) in terms of f, g, &, ¢ now get transformed into
f'=0, f=0,g=0,¢=1 at n=0, f">0,g—->0,d>0,¢>0asn—>x (31)

and the mixed thermal condition at 77 = O is given by
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(1-m)9(0)-me'(0)=1

The following cases of mixed thermal boundary
condition are of special interest: Case (a): Variable

Wall Temperature (VWT): If T:TW(X) aty=0,

where T,(x)=T, +ATx"gives m=0 thus mixed
thermal boundary condition reduces to the form
49(0):1. Case (b): Variable Wall Heat Flux (VWHF):

For this case, the variable wall heat flux condition

—i = ATX", givesm=1, hence, the mixed thermal

boundary condition reduces to 9’(0): —1. Case(c):
Radiation Boundary Condition (RBC): At the wall i.e.,
at y=0, radiative boundary condition

_%:ATxm(TW(x)—Tw) gives m—> o, hence the

mixed thermal reduces to

6(0)+6'(0)=0.

boundary condition

V. SKIN-FRICTION AND WALL
COUPLE STRESS

The non-dimensional skin friction C, and wall couple
stressM , are given by

2
%Cf =2(1+K)f"(0) and
Re? K
—M, =|1+—1g'(0).
o M. ( + 2)9( )

VI. RESULTS AND DISCUSSION

Similarity analysis of free-convection boundary-layer
flow about a vertical plate embedded in a micropolar
fluid under mixed thermal boundary conditions in the
presence of a transverse magnetic field using Lie group
point transformations is studied. Using the Lie group
point transformations on the governing equations result
in a set of coupled second-order non-linear differential

equations Eqs. (27) — (30) for (1), g(r7), 8(n) and
¢(77) along with the boundary conditions Eqgs. (31) and

(32). These equations (27) — (30) were solved
numerically for the radiation boundary condition
(RBC) case(m—>oo), by employing the local
linearisation method (Motsa, 2013) which linearise the
equations then apply the spectral collocation method
for discretization and subsequent solution. We remark
that the choice of linearisation method is influenced by
the wall temperature conditions under investigation. It
was observed that the local linearization method (LLM)
is applicable for the variable wall temperature and
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(32)
variable wall heat flux condition. Applying the LLM on
the radiation boundary condition gives only the trivial
solution @ = 0for temperature which is not meaningful
physically. The non-trivial solution can be obtained by
linearising the momentum and energy equations as a
coupled pair of equations with unknown functions f
and@ at any level of iteration. Below, we give the
development of the iteration scheme used for the
generation of results under the different wall
temperature conditions. The derivation of the LLM
scheme starts with writing the system of ODEs in
compact operator form as

Ql[F(ﬂ)] =0, Q, [G(U)] =0
Q, [T (77)] =0, Q, [P(ﬂ)] =0

(33)

where €, Q,, Q, and(,are non-linear operators

that denote equation (27 — 30) respectively, and
F,G, T, P are defined as

Lt a
’dn’dnz’dn3 1
o d'g
1d771d772 1
2
=109 901
dn dn®

-t

"dn dn?

The assumption made in presenting the governing
equations in the form (33) is that at any iteration level
the dominant unknown functions are the ones
corresponding to the term with the highest derivative in
each equation. Linearising the first equation by

applying the Taylor series expansion of €, about
some previous approximation of the solution denoted
by f,, gives

F

G

(l"' K ) fr'Il + ai(f) fr,jrl + ai(i) fr,+1 + al(g) fr+1 = Rl
(34)
f..=0, f/, =0, fr+1(77): 0 as n—oo

(35)

ai(i) = frl al(:lt) =2 fr’_ M ’ al((l)) = fr”’

Rl = _Kg; _er - B¢r + fr fr”_(fr,)2 :

In the above equation r+1 and r denote the current
and previous iteration levels. It is worth noting that in
view of the assumption that the solutions for g, & and

¢ are known at the previous iteration level the solution

where,
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the others equations are given by

K 14 !

(1+EJgr+l + aglz)gr+1 + agg)ng. = R21 gr+1 = O’ gr+1(77): O as 77 —> 0 (36)
1

EH& + ag]é)er'ﬁ-l + a§2)9r+1 = Rsv (1_ m)9r+l(0)_ merl+1(0) =1, 9r+1(77) =0asn—>oo (37)
l 4 !

§ b T ag,ld,)¢r+l + aé(li)¢r+l =R,, ¢r+1(0) =1, ¢r+l(77) =0 as 7> (38)

The coefficients are defined as

aglz) = fr+1’ agg) == fr'+1 - ZK’ a:%) = 1:r+l' agg) == fr’+1’

al =all, alf=al, R,=2Kf/, R,=R,=0

To solve the linearised system of equations (34 — 38) F’'=DF, F" = D?F, F" = D°F (40)

we use the standard spectral collocation method that
transforms the continuous derivatives to the matrix

vector products at N selected collocation points
n; =Cos(7zj/N), according to the definition

t07,)=3"D,,(m) i-0.L2,..,N.
(39)
The use of (39) leads to

where

A, =(1+K)D*+a? D?+a¥Y D+a?, A

A, Pi D2+al)D+al%, A,
r

To analyze the results for the present investigation
under the radiation boundary condition (case(c))
m —> oo case, the values of f"(0) and 6(0) were
given in the Table 1 for K=0=M =B and Pr =10.
These values compared with the results given by

Buyuk and Ece[7] for free convection in the absence of
magnetic field were found to be in good agreement.

For the case (c), i.e., radiation boundary condition
(RBC) case the Figs.1(a)-1(d) depict the variation of
coupling number (K) on the profiles of velocity,
microrotation, temperature and concentration with7; .
As for the consideration of the fluid model, the
coupling number K characterised as a result of the
coupling of linear and rotational motion arising from
the micromotion of the fluid molecules. Hence,
K =/ usignifies the coupling between the
Newtonian and rotational viscosities. The effect of
microstructure becomes significant for the increasing
values of K while the individuality of the substructure

where Dis the scaled differentiation matrix whose
entries are defined in (Canuto et al.,, 1988) and

F=[f(m,) f(,) ... Ty )] . Using equation (40) on
the linearized equations (34 — 38) gives

AF=R,,A,G=R,,A,T=R,, AP=R,

, =(1+K/2)D*+al) D+al%

1

is much less pronounced for the decreasing values of
K'. We can see that in the limiting case of K —0i.e.,
x — 0, the micropolarity behaviour of the fluid
vanishes and the fluid behaves as nonpolar fluid, and
this leads to the case of viscous fluid. It is observed
from Fig.1 (a) that as the value of K increases there is a
asymptotical decrease in the velocity. From K —0
case i.e., the case of viscous to the non-viscous case
there is a decrease in velocity. From Fig.1(b) it is
evident that, at the wall there is a decrease in the
component of microrotation. With the increment values
of K the microrotation parameter increases in the
ambient medium. Asx — 0, i.e., K—0, the Eq. (3)
becomes uncoupled with Egs. (1) and (2) and they
reduce to the equations of viscous fluid flow. It is very
interesting to notice from Fig.1(c) that the temperature
increases with the increasing values of coupling
number. This is because of the decrease in fluid
velocity, which causes to
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Figure 1: Velocity, microrotaton, temperature and concentration profiles for different values of K .

decrease the replacement of hot fluid chunks near the

plate by cold fluid chunks. Same trend can be observed
in Fig.1 (d) that from the case of non-Newtonian to the

case of Newto

nian concentration increases.

0 63400
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=== 108
Fel T~ e M=20
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047550 T e
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a I1 2 =
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Figure 2: Profiles of heat and mass transfer rates as a

function of K for different values of magnetic parameter

(M).
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Figs. 2(a) and 2(b) depict that the effect of coupling
number (N) on heat transfer rate and mass transfer

rate, for different M values. From the Figs. 2(a) and
2(b) it is observed that both the heat and mass transfer
rates decrease for the increasing values of the magnetic
parameter. This is because of the resistance increased
between the fluid layers as a result of transverse
magnetic field, which leads to Lorentz force. This leads
to slow down the mechanism of replacement of hot
fluid at the surface of the plate by the cold fluid chunks
away from the plate. Hence the heat and mass transfer

rates decrease as M increases.

Table 1

[71 Present
f"(0) | 0.283227 | 0.283227
6(0) | 0496337 | 0.496337
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