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Abstract: Stokes steady incompressible viscous fluid flow through a partially permeable cylinder is analytically

studied using cell

model technigue. Considered flow is divided into two regions, outer viscous fluid region and

inner semipermeable region which are governed by Stokes and Darcy's law respectively. Boundary conditions for
the fluid porous interface are continuity of normal component of velocity, vanishing of tangential component of
velocity and continuity of pressure accompanying the boundary condition for cell surface. Exact solution and an
expression for drag exerted on the cylinder is calculated using stream function. Variation of Kozeny constant
against fractional void volume is studied numerically. As special case analytical and numerical results agrees with

well known existing results.
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I. INTRODUCTION

The classical problems considering the fluid motion
bearing low Reynolds number past a semipermeable
membrane continues to be of much interest due to its
application in the various fields like industry chemical,
biomedical, meteorology, environmental engineering
etc. Semipermeable membrane permits certain types of
particles to pass through it that too under certain
conditions i.e., basically a membrane with very low
permeability.

Due to the vast application of flow past porous
medium, several models have been developed. In study
of flow past assemblage of porous particles there is
complex interaction of numerous particles. To
investigate such problem a unit cell model technique
was introduced by Happel (Happel and Brenner, 1965).
In cell model technique the problem of large number of
particles is reduced to the problem considering a single
particle inside a fluid envelope. Cell model proposed
by Happel (1958) and Kuwabara (1959) are used for
modelling flow along an assemblage of circular
cylinders (spheres). Happel model consider the
vanishing of shear stress condition on the hypothetical
cell surface and Kuwabara model consider zero
vorticity on the outer cell surface. Flow over a circular
cylinder was first studied by Spielman and Goren
(1968) using Darcy-Brinkman's equation. Brown

(1975) discussed the slow permeation of fluids past
assemblage of cylinders. Viscous flow through a
cylinder embedded in a porous media using Brinkman's
equation was studied by Pop and Cheng (1992). Datta
and Shukla (2003) modelled the flow past a cylinder
having slip boundary condition and obtained the drag.
Stokes flow past a swarm of spherical particles in
motion with arbitrary direction was evaluated by
Dassios and Vafeas (2004) by taking use of 3D Happel
model. Kim and Yuan (2005) proposed a different
model in membrane filtration processes to find specific
resistance of aggregated colloidal cake layers. Deo et
al. (2011) has focused on studying the flow in circular
cylinder with impermeable core for parallel and
perpendicular case. The problem of micropolar fluid
flow in cylindrical shell for both parallel and
perpendicular case was studied by Sherief et al. (2014).
Later, Srinivasacharya and Prasad (2017) considered
the problem of micropolar fluid past a sphere and
cylinder which are embedded in a porous media.
Shapovalov (2009) studied viscous flow problem
around a semipermeable spherical particle by
considering continuity of normal component of
velocity, vanishing of tangential component of velocity
and continuity of pressure as boundary conditions and
obtained the expression for drag which he found to be
lower compared to the drag of a non porous sphere.
Presently, we are extending the work done by
Shapovalov to the case of perpendicular flow past a
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circular cylinder in cell model.

In this present study, we are considering flow past a
semipermeable cylinder using Happel and Kuwabara
cell model. Boundary conditions used for this
axisymmetric flow are continuity of normal component
of velocity, vanishing of tangential component of
velocity and continuity of pressure together with the
conditions used for cell surface. Bounded fluid region
and porous region are denoted here by I, |l
respectively. For region | and region Il, we use Stokes
approximation and Darcy's law. Expression for stream
function, pressure and Kozeny constant are presented.
Graphs and tables are obtained for Kozeny constant
with respect to fractional void volume.

II. FORMULATION OF THE
PROBLEM

Consider the axisymmetric viscous fluid flow past a
semipermeable cylinder of radius r = b bounded by a
cylindrical container having radius r =a (b < a) in a
uniform stream of velocity U (See Figure 1). Outside
region | (b < r < a) and inner porous region Il (r < b)
are denoted by i, where i = 1, 2 respectively.

—P Hypothetical
) Cell surface

Semipermeable
Region 11

Figure 1: Co-ordinate of semipermeable cylinder in
cell model

Equations for flow regions | and 1l governed by Stokes
(Happel and Brenner, 1965) and Darcy’s law (Darcy,
1910)

V . q(l) = 0, (1)
VpD + v x v x q =0, (2)
Vp® +2q@ =0. (4)

where q® is velocity vector, p® is pressure, u is
coefficient of viscosity for both the regions and k is
permeability of the porous region.
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Non-dimensional variables are considered to convert
the governing equations into dimensionless form as

r=b7, q0=Ugq®, V=2V
p® = %Uﬁ(i) (5)
and substituting them in Egs. (1) - (4) and then
dropping the tildes, we get,

VpMD +vxVxq® =0, (7
V . q(z) = 0’ (8)
vp® + p2q® = 0. (9)

2
Where g2 = b?

Let (r,0,z) be the co-ordinate in cylindrical system
with z axis towards the axis of cell surface.

As the fluid flow is two dimensional and quasi steady,
so all the quantities involved in fluid flow does not
depend on z.

Therefore, velocity vectors are expressed as

q® = qﬁl)(r, e, + qg)(r,é?)eg, i=1,2. (10)
Let, the surface of the cylinder be r = b. We define
stream functions ®,i = 1,2 satisfying continuity
equations (6) and (8) for the flow in bounded and
porous region of the semipermeable cylinder
respectively.

Components of velocity in terms of stream function are
O _ 109 o _ _aw® . _
pEsm g == —— =12 (12)

Using Egs. (11) and then eliminating pressure terms
from Egs. (7) and (9) we obtain

viy®D =0, (12)
V2@ =0 . (13)

2_ 9% 10 107 . '
Where  V®=_—+-—+—5—> is the Laplacian
operator.

The tangential and normal stresses components of
Region | are given by

D _ ia%/,(l) lal/’(l) _ a2y®
Lo = [rz 062 r or or? ]’ (14)
M) _ _pay  2u [0 199D
T’ = TP [arae r 00 ] (15)
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II. BOUNDARY CONDITIONS

Boundary conditions for the present formulated
problem of semipermeable particle i.e., particle
satisfying Darcy's law for the governing equations are
continuity of normal component of velocity, vanishing
of tangential component of velocity, continuity of
pressure (Joseph and Tao, 1964; Shapovalov, 2009)
together with boundary condition for cell models.

At the interface between fluid-porous regions of the
cylinder r = b, the boundary conditions are

o _ @

Qr - qr 1 (16)
s = (17)
p® =p®, (18)

and at cell surface of cylindrical envelope r = a, the
boundary conditions are

qﬁl) +Ucos @ =0, (29)
For Happel model
) =0, (20)
For Kuwabara model
curl gV = 0. (21)

The boundary condition on the inner surface r = 1
using stream function 1@, where i = 1,2 are

ay® _ Y@

90 80 ' (22)
31/1(1) _
or - 01 (23)
p@® = p@), (24)
On the cell surface r = 271 (A = E)
a
eH)
01!) +7rcosf =0, (25)
For Happel model
62
(v2-225)p® =0 (26)
For Kuwabara model
v2y® =0, (27)
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IV. SOLUTION OF THE PROBLEM

The expression of solution for the region | and Il
obtained are

YD =[Ar + Br3 + Cr~! + Drinr]sin 6 , (28)
Y@ = Ersin 6. (29)

The expression for pressures in both the regions are
given as
p® = (8Br — 2Dr Ycos 6, (30)

p® = —B2Ercos 6. (31)

Where A, B, C, D and E are arbitrary constants to be
determined.

V. DRAG FORCEACTING ON THE
BODY

Drag force acting on the cylinder due to the viscous
flow can be evaluated by using the formula

F=["r[

By substituting Egs. (28) in the above integral we get

do

r=1

6059 ( )sme]

Fp = 4muUD (32)

Drag acting on the semipermeable cylinder in presence
of cylindrical cell is

= Happel model

oo

(2(82-9)In(3)+p2+14)24+52(2In (7)-1)+2
(33)

=  Kuwabara model

- _ 2p*
Fp = —8muU [4(ﬁ2+2)12+[32(41n(%)—3)—(ﬁ2—4)l4+4]
(34)
5.1. Special results
If - oi.e, permeability k = 0, it behaves as a
solid cylinder and the drag force is
= Happel model
_ (2*+1)
Fp = —8mul memln@)_l
(35)
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= Kuwabara model

2
Fp = —8muU [424+41n(%)—24—3]
(36)
which agrees with the results obtained in Happel and
Brenner (1965).

Expression for Kozeny constant (Prakash et al., 2011;
Saad, 2018) given by Kozeny Carman (Carman, 1956)
for flow past a cylinder with perpendicular flow is

_ & FD
ez = 4(1-¢) (37)
where ¢ is fractional void volume and is

bZ
e=(1-Z5)=0-N=01-2)
The variation of Kozeny constant k, with respect to

fractional void volume & is shown by Figure 2 and
Table 1 for different values of permeability parameter

kq (k1=[%). It is interesting to note that for

semipermeable cylindrical particle the value of Kozeny
constant for fixed permeability value increases for
increasing void volume. Moreover, for increasing
permeability the decrease in the value of Kozeny
constant is observed. It is noticed that when fractional
void volume ¢ is small, Kozeny constant is weaker and
Kozeny constant increases at high rate as ¢ approaches
to 1.
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Figure 2: Variation of Kozeny constant against fractional
void volume with varying permeability for A = (1 — £)1/?

From Table 1. the values of Kozeny constant for solid
cylinder and semipermeable cylinder for the case of
perpendicular flow are obtained. The results for the
case of solid cylinder are identical to the values
obtained by Deo et al. (2011) and Saad (2018). New
results for the case of semipermeable cylinder are
presented. By giving attention to the obtained results it
is seen that the magnitude of Kozeny constant for
semipermeable cylinder are extremely less compared to
solid cylinder in cell model. However these values are
relatively higher for the case of Kuwabara model
compared to Happel model.

Table 1: Magnitude of Kozeny constant against fractional void volume for solid cylinder ( — oo ) and semipermeable
cylinder (8 = (0.4)71)

k,
€ Solid Semipermeable

Happel Kuwabara Happel Kuwabara

model model model model
0.1 | 5.72530 6.16400 0.00137 0.00192
0.2 | 5.50758 6.36223 0.01475 0.01923
0.3 | 5.35972 6.60756 0.06837 0.08237
0.4 |5.30187 6.92065 0.22660 0.25097
0.5 | 5.36785 7.33706 0.61545 0.63439
0.6 | 5.62053 7.92424 1.41455 1.41456
0.7 | 6.19507 8.82976 2.76247 2.85915
0.8 | 7.45963 10.4610 4.79917 5.38812

V1. CONCLUSION

Present work has been done for finding the exact
solution of the problem related to Stokes flow
through a semipermeable cylinder. Stokes and Darcy's
equations governing the flow field for the present
problem is solved analytically and an expression for
drag exerted on the semipermeable cylindrical particle
is calculated. Plot of Kozeny constant versus fractional
void volume for varying permeability is shown
graphically. Numerical study of variation of Kozeny
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constant against void fraction is presented and it
matches with earlier well known results in reduction
cases. From the above investigation it is concluded that
the drag exerted on semipermeable cylinder is lower
than the drag on non-porous cylinder.
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