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Abstract: Stokes steady incompressible viscous fluid flow through a partially permeable cylinder is analytically 

studied using cell   model technique. Considered flow is divided into two regions, outer viscous fluid region and 

inner semipermeable region which are governed by Stokes and Darcy's law respectively. Boundary conditions for 

the fluid porous interface are continuity of normal component of velocity, vanishing of tangential component of 

velocity and continuity of pressure accompanying the boundary condition for cell surface. Exact solution and an 

expression for drag exerted on the cylinder is calculated using stream function. Variation of Kozeny constant 

against fractional void volume is studied numerically. As special case analytical and numerical results agrees with 

well known existing results. 
 

Keywords: Semipermeable cylinder, Stokes flow, Darcy's law, drag force, cell models. 

 

I. INTRODUCTION 
 

The classical problems considering the fluid motion 

bearing low Reynolds number past a semipermeable 

membrane continues to be of much interest due to its 

application in the various fields like industry chemical, 

biomedical, meteorology, environmental engineering 

etc. Semipermeable membrane permits certain types of 

particles to pass through it that too under certain 

conditions i.e., basically a membrane with very low 

permeability.  

 

Due to the vast application of flow past porous 

medium, several models have been developed. In study 

of flow past assemblage of porous particles there is 

complex interaction of numerous particles. To 

investigate such problem a unit cell model technique 

was introduced by Happel (Happel and Brenner, 1965). 

In cell model technique the problem of large number of 

particles is reduced to the problem considering a single 

particle inside a fluid envelope. Cell model proposed 

by Happel (1958) and Kuwabara (1959) are used for 

modelling flow along an assemblage of circular 

cylinders (spheres). Happel model consider the 

vanishing of shear stress condition on the hypothetical 

cell surface and Kuwabara model consider zero 

vorticity on the outer cell surface. Flow over a circular 

cylinder was first studied by Spielman and Goren 

(1968) using Darcy-Brinkman's equation. Brown 

(1975) discussed the slow permeation of fluids past 

assemblage of cylinders. Viscous flow through a 

cylinder embedded in a porous media using Brinkman's 

equation was studied by Pop and Cheng (1992). Datta 

and Shukla (2003) modelled the flow past a cylinder 

having slip boundary condition and obtained the drag. 

Stokes flow past a swarm of spherical particles in 

motion with arbitrary direction was evaluated by 

Dassios and Vafeas (2004) by taking use of 3D Happel 

model. Kim and Yuan (2005) proposed a different 

model in membrane filtration processes to find specific 

resistance of aggregated colloidal cake layers. Deo et 

al. (2011) has focused on studying the flow in circular 

cylinder with impermeable core for parallel and 

perpendicular case. The problem of micropolar fluid 

flow in cylindrical shell for both parallel and 

perpendicular case was studied by Sherief et al. (2014). 

Later, Srinivasacharya and Prasad (2017) considered 

the problem of micropolar fluid past a sphere and 

cylinder which are embedded in a porous media. 

Shapovalov (2009) studied viscous flow problem 

around a semipermeable spherical particle by 

considering continuity of normal component of 

velocity, vanishing of tangential component of velocity 

and continuity of pressure as boundary conditions and 

obtained the expression for drag which he found to be 

lower compared to the drag of a non porous sphere. 

Presently, we are extending the work done by 

Shapovalov to the case of perpendicular flow past a 
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circular cylinder in cell model. 

 

In this present study, we are considering flow past a 

semipermeable cylinder using Happel and Kuwabara 

cell model. Boundary conditions used for this 

axisymmetric flow are continuity of normal component 

of velocity, vanishing of tangential component of 

velocity and continuity of pressure together with the 

conditions used for cell surface. Bounded fluid region 

and porous region are denoted here by I, II 

respectively. For region I and region II, we use Stokes 

approximation and Darcy's law.  Expression for stream 

function, pressure and Kozeny constant are presented. 

Graphs and tables are obtained for Kozeny constant 

with respect to fractional void volume. 

 

II. FORMULATION OF THE 

PROBLEM 
 

Consider the axisymmetric viscous fluid flow past a 

semipermeable cylinder of radius 𝑟 = 𝑏 bounded by a 

cylindrical container having radius 𝑟 = 𝑎 (𝑏 ≤ 𝑎) in a 

uniform stream of velocity U (See Figure 1). Outside 

region I (𝑏 ≤ 𝑟 ≤ 𝑎) and inner porous region II (𝑟 ≤ 𝑏) 

are denoted by i, where 𝑖 = 1, 2 respectively. 

 

 
 

Figure 1: Co-ordinate of semipermeable cylinder in 

cell model 

 

Equations for flow regions I and II governed by Stokes 

(Happel and Brenner, 1965) and Darcy’s law (Darcy, 

1910) 

       ∇ ∙ 𝐪(1) = 0,                     (1) 

       ∇𝑝(1) + 𝜇∇ × ∇ × 𝐪 1 = 0,                         (2) 

       ∇ ∙ 𝐪(2) = 0,                                                    (3) 

 

       ∇𝑝(2) +
𝜇

𝑘
𝐪 2 = 0.                                        (4) 

 

where 𝐪 𝑖  is velocity vector, 𝑝(𝑖) is pressure, 𝜇 is 

coefficient of  viscosity for both the regions and k is 

permeability of the porous region. 

Non-dimensional variables are considered to convert 

the governing equations into dimensionless form as 

                            𝑟 = 𝑏𝑟 , 𝐪(𝑖) = 𝑈𝐪  (𝑖),   ∇=
1

𝑏
∇   , 

 𝑝(𝑖) =
𝜇

𝑏
𝑈𝑝 (𝑖)                                        (5) 

and substituting them in Eqs. (1) - (4) and then 

dropping the tildes, we get,  

 

       ∇ ∙ 𝐪(1) = 0,                                       (6) 

       ∇𝑝(1) + ∇ × ∇ × 𝐪 1 = 0,                             (7) 

      ∇ ∙ 𝐪(2) = 0,                                                       (8) 

 

       ∇𝑝(2) + 𝛽2𝐪 2 = 0.                                          (9) 

 

Where 𝛽2 =
𝑏2

𝑘
. 

 

Let  𝑟, 𝜃, 𝑧   be the co-ordinate in cylindrical system 

with 𝑧 axis towards the axis of cell surface.  

 

As the fluid flow is two dimensional and quasi steady, 

so all the quantities involved in fluid flow does not 

depend on 𝑧. 

 

Therefore, velocity vectors are expressed as 

 

𝐪(𝒊) = 𝑞𝑟
 𝑖  𝑟, 𝜃 𝒆𝑟 + 𝑞𝜃

 𝑖  𝑟, 𝜃 𝒆𝜃 ,   𝑖 = 1,2.      (10) 

 

Let, the surface of the cylinder be 𝑟 = 𝑏. We define 

stream functions 𝜓(𝑖), 𝑖 = 1,2 satisfying continuity 

equations (6) and (8) for the flow in bounded and 

porous region of the semipermeable cylinder 

respectively. 

 

Components of velocity in terms of stream function are 

𝑞𝑟
(𝑖)

=
1

𝑟

𝜕𝜓 (𝑖)

𝜕𝜃
, 𝑞𝜃

(𝑖)
= −

𝜕𝜓 (𝑖)

𝜕𝑟
;     𝑖 = 1,2.      (11) 

 

Using Eqs. (11) and then eliminating pressure terms 

from Eqs. (7) and (9) we obtain 

 

 ∇4𝜓(1) = 0,                         (12)  

  

 ∇2𝜓(2) = 0 .                       (13) 

Where   ∇2=
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2  is the Laplacian 

operator. 

  

 The tangential and normal stresses components of 

Region I are given by 

 

𝜏𝑟𝜃
(1)

= 𝜇  
1

𝑟2

𝜕2𝜓 (1)

𝜕𝜃2 +
1

𝑟

𝜕𝜓 (1)

𝜕𝑟
−

𝜕2𝜓 (1)

𝜕𝑟2  ,                    (14) 

 

𝜏𝑟𝑟
(1)

= −𝑝(1) +
2𝜇

𝑟
 
𝜕2𝜓 (1)

𝜕𝑟𝜕𝜃
−

1

𝑟

𝜕𝜓 (1)

𝜕𝜃
 .                       (15) 
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III. BOUNDARY CONDITIONS 

 

Boundary conditions for the present formulated 

problem of semipermeable particle i.e., particle 

satisfying Darcy's law for the governing equations are 

continuity of normal component of velocity, vanishing 

of tangential component of velocity, continuity of 

pressure (Joseph and Tao, 1964; Shapovalov, 2009) 

together with boundary condition for cell models. 

 

At the interface between fluid-porous regions of the 

cylinder 𝑟 = 𝑏, the boundary conditions are  
 

𝑞𝑟
 1 

= 𝑞𝑟
 2 

,                    (16) 

 

𝑞𝜃
 1 

= 0,                    (17) 

 

𝑝 1 = 𝑝 2 ,                           (18) 
 

and at cell surface of cylindrical envelope  𝑟 = 𝑎, the 

boundary conditions are 

 

𝑞𝑟
 1 

+ 𝑈 cos 𝜃 = 0,                        (19) 

 

For Happel model 

 

      𝜏𝑟𝜃
(1)

= 0,                       (20)                                                                                                      

 

For Kuwabara  model 

 

  𝑐𝑢𝑟𝑙 𝐪(1) = 0.                                                    (21) 

    

The boundary condition on the inner surface 𝑟 = 1 

using stream function 𝜓(𝑖), where 𝑖 = 1,2 are 

 
 𝜕𝜓 (1)

𝜕𝜃
=

𝜕𝜓 (2)

𝜕𝜃
,                                       (22) 

 
𝜕𝜓  1 

𝜕𝑟
= 0,                     (23) 

 

𝑝 1 = 𝑝 2 ,                           (24) 

          

On the cell surface 𝑟 = 𝜆−1  𝜆 =
𝑏

𝑎
   

 
𝜕𝜓 (1)

𝜕𝜃
+ 𝑟 cos 𝜃 = 0,                      (25) 

 

For Happel model 

 

       ∇2 − 2
𝜕2

𝜕𝑟2 𝜓 1 = 0,                                  (26) 

 

 

For Kuwabara  model 

 

               ∇2𝜓(1) = 0.                  (27) 
 

IV. SOLUTION OF THE PROBLEM 
 

The expression of solution for the region I and II 

obtained are 

 

𝜓(1) =  𝐴𝑟 + 𝐵𝑟3 + 𝐶𝑟−1 + 𝐷𝑟 ln 𝑟 sin 𝜃 ,    (28) 

 

𝜓(2) = 𝐸𝑟sin 𝜃.                        (29) 

 

The expression for pressures in both the regions are 

given as 

 

𝑝(1) =  8𝐵𝑟 − 2𝐷𝑟−1 cos 𝜃,                                (30) 

 

 𝑝(2) = −𝛽2𝐸𝑟cos 𝜃.                            (31) 

 

Where A, B, C, D and E are arbitrary constants to be 

determined. 
 

V. DRAG FORCE ACTING ON THE 

BODY 
 

Drag force acting on the cylinder due to the viscous 

flow can be evaluated by using the formula 

 

𝐹 =  𝑟   𝜏𝑟𝑟
(1)

𝑐𝑜𝑠𝜃 − 𝜏𝑟𝜃
(1)

𝑠𝑖𝑛𝜃  
𝑟=1

𝑑𝜃
2𝜋

0
   

                                                   

By substituting Eqs. (28) in the above integral we get  

 

𝐹𝐷 = 4𝜋𝜇𝑈𝐷                                    (32) 

 

Drag acting on the semipermeable cylinder in presence 

of cylindrical cell is 

 

 Happel model 

 

𝐹𝐷 = 8𝜋𝜇𝑈  
  𝛽2−4 𝜆4+𝛽2 

 2 𝛽2−4 ln 
1

𝜆
 +𝛽2+14 𝜆4+𝛽2 2 ln 

1

𝜆
 −1 +2

                                     

(33) 

                                         

 Kuwabara  model 

 

𝐹𝐷 = −8𝜋𝜇𝑈  
2𝛽2

4 𝛽2+2 𝜆2+𝛽2 4 ln 
1

𝜆
 −3 − 𝛽2−4 𝜆4+4

                                        

(34)  

 

5.1. Special results 

 

If  𝛽 → ∞ i.e., permeability  𝑘 = 0, it behaves  as a 

solid cylinder and the drag force is 

 

 Happel model 

 

𝐹𝐷 = −8𝜋𝜇𝑈  
 𝜆4+1 

𝜆4+2 𝜆4+1 ln 
1

𝜆
 −1

                                                                  

(35) 
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 Kuwabara  model 

𝐹𝐷 = −8𝜋𝜇𝑈  
2

4𝜆4+4 ln 
1

𝜆
 −𝜆4−3

                                                                    

(36) 

which agrees with the results obtained in Happel and 

Brenner (1965). 

 

Expression for Kozeny constant (Prakash et al., 2011; 

Saad, 2018) given by Kozeny Carman (Carman, 1956) 

for flow past a cylinder with perpendicular flow is 

              𝑘𝑧 = −
𝜀3𝐹𝐷

4 1−𝜀 
               (37) 

where ε is fractional void volume and is 

      𝜀 =  1 −
𝜋𝑏2

𝜋𝑎 2 =  1 − 𝛾 =  1 − 𝜆2    

The variation of Kozeny constant 𝑘𝑧  with respect to 

fractional void volume ε is shown by Figure 2 and 

Table 1 for different values of permeability parameter 

𝑘1  𝑘1 =
1

𝛽2 . It is interesting to note that for 

semipermeable cylindrical particle the value of Kozeny 

constant for fixed permeability value increases for 

increasing void volume. Moreover, for increasing 

permeability the decrease in the value of Kozeny 

constant is observed. It is noticed that when fractional 

void volume ε is small, Kozeny constant is weaker and 

Kozeny constant increases at high rate as ε approaches 

to 1.  

                  

 
 

Figure 2: Variation of Kozeny constant against fractional 

void volume with varying   permeability for 𝜆 =  1 − 𝜀 1/2 
 

From Table 1. the values of Kozeny constant for solid 

cylinder and semipermeable cylinder for the case of 

perpendicular flow are obtained. The results for the 

case of solid cylinder are identical to the values 

obtained by Deo et al. (2011) and Saad (2018). New 

results for the case of semipermeable cylinder are 

presented. By giving attention to the obtained results it 

is seen that the magnitude of Kozeny constant for 

semipermeable cylinder are extremely less compared to 

solid cylinder in cell model. However these values are 

relatively higher for the case of Kuwabara model 

compared to Happel model. 

 
Table 1: Magnitude of Kozeny constant against fractional void volume for solid  cylinder  𝜷 → ∞   and semipermeable 

cylinder  𝜷 =  𝟎. 𝟒 −𝟏   
 

𝑘𝑧  

𝜀 
 

                  Solid Semipermeable 

Happel 

model 

Kuwabara 

model 

Happel 

model 

Kuwabara 

model 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

5.72530 

5.50758 

5.35972 

5.30187 

5.36785 

5.62053 

6.19507 

7.45963 

6.16400 

6.36223 

6.60756 

6.92065 

7.33706 

7.92424 

8.82976 

10.4610 

0.00137 

0.01475 

0.06837 

0.22660 

0.61545 

1.41455 

2.76247 

4.79917 

0.00192 

0.01923 

0.08237 

0.25097 

0.63439 

1.41456 

2.85915 

5.38812 

 

VI. CONCLUSION 
 

Present work has been done for finding the exact 

solution of the problem related to Stokes     flow 

through a semipermeable cylinder. Stokes and Darcy's 

equations governing the flow field for the present 

problem is solved analytically and an expression for 

drag exerted on the semipermeable cylindrical particle 

is calculated. Plot of Kozeny constant versus fractional 

void volume for varying permeability is shown 

graphically. Numerical study of variation of Kozeny 

constant against void fraction is presented and it 

matches with earlier well known results in reduction 

cases. From the above investigation it is concluded that 

the drag exerted on semipermeable cylinder is lower 

than the drag on non-porous cylinder. 
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