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Abstract: The numerical investigation on heat transfer in the thermal entrance region of channel partially filled 

with a porous medium with the effect of axial conduction subjected to the boundary condition uniform heat flux 

have been studied. Porous insert attached adjacent to the both walls of the channel. The flow in the fluid and 

porous region are governed by Poiseuille flow and Darcy-Brinkman model. The flow is assumed to be 

unidirectional. The effect of the various parameters such as Darcy number, Peclet number and porous fraction on 

the heat transfer coefficient has been studied. The local Nusselt number depends on the porous fraction. The effect 

of the axial conduction is high when Peclet number is small in the entrance region of the channel. 
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I. INTRODUCTION 
 

Several studies (Agrawal [1]; Hennecke [2]; Vick and 

Ozisik [3]; Jagadeesh Kumar [4]) have shown that axial 

conduction term becomes significant in the equation of 

energy at low Peclet number in the case of forced 

convection in the ducts. Further, thermal field 

significantly gets altered because of axial conduction. 

Several researchers (Lundberg and Mccuen [5]; 

Worsoe-Schmidt [6];  Nguyen and Maclaine-cross [7]; 

Campo and Salazar [8]; Xiong [9]) studied the problem 

of forced convection considering axial conduction 

effect, under different conditions. In particular, Shah 

and London [10]  studied the problem of heat transfer 

in the entrance region for a viscous incompressible 

fluid in both two dimensional channel and circular 

cylindrical tube taking into consideration axial 

conduction term. Nguyen [11] studied same problem 

under the wall boundary conditions of uniform 

temperature and uniform heat flux.  Nield, Kuznetsov 

and Xiong [12] investigated the effects of viscous 

dissipation, axial conduction with uniform temperature 

at the walls, on thermally developing forced convection 

heat transfer in a parallel plate channel fully filled with 

a porous medium. Ramjee and Satyamurty [13] studied 

local and average heat transfer in thermally developing 

region of an asymmetrically heated channel.  

In the present study, the effect of axial conduction in 

the entrance region of channel partially filled with a 

porous medium has been studied. It is assumed that the 

flow is unidirectional and thermal field is developing. 

Numerical solutions for the two dimensional energy 

equations in both porous and fluid regions have been 

obtained using successive accelerated replacement 

(SAR) numerical scheme (Satyamurty and Bhargavi 

[14];  Bhargavi and Sharath Kumar Reddy [15]). The 

effects of key parameters on temperature and its 

derived quantities such as bulk mean temperature and 

local Nusselt number have been investigated. 

 

II. MATHEMATICAL 

FORMULATION 
 

The non-dimensional  variables are following 

 

/X x H ,  /Y y H ,  
/f f refU u u

,  
/i i refU u u

, 
/p p refU u u

, 

2/  
ref

P p u
,          (1) 

( ) /( / )f f e fT T qH k  
,

( ) /( / )p p e fT T qH k  
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In Eq.(1), uf  and up are the dimensional velocity in 

fluid and porous regions.  X and Y are the 

dimensionless axial and normal coordinates. Uf and Up 

are the dimensionless velocity in fluid and porous 

regions. p is the dimensional pressure and P is the 

dimensionless pressure. θ is the dimensionless 

temperature. μf  is  the  viscosity of the fluid, μfef  is  

effective viscosity of the porous. kf is the thermal 

conductivity of the fluid, keff is the effective thermal 

conductivity of the porous. γp is the porous fraction 

defined as ratio of thickness of porous material and 

width of the channel(i.e., lp/H).

 

 
(a) Dimensional                                         (b) Non-dimensional 

Figure 1: Schematic diagram of the problem. 

 

The non-dimensional governing equations and boundary conditions become(using Eq. (1)), 

 

Fluid Region 

 

2

2
 

fd U dP
Re

dY dX


                                         (2) 

2

2 2

* 2 2*

1f f f

f cU A
X Pe YX

    
 

                                  (3) 

Eq. (2), Re, the Reynolds number is defined by, 

ref fRe u H / 
                                           (4) 

[1] Eq. (3),  Pe is the Peclet number and X
*
 is the normalized X, are defined  

[2] 
/  and /ref fPe u H X X Pe  

                                                              (5) 

 

Porous Region 

  

2

2
 

p

p

d U dP
U Re

dY Da dX


 

                                               (6) 

2

2 2

* 2 2*

1 1p p p

p cU A
X Pe YX

  



   
                                                         (7) 

Eq. (6),  Da and   are defined as, 

2
 and /  f eff

K
Da

H
   

                                    (8) 

Eq. (7) , η is defined as,     

 /f effk k 
                                              (9) 

When cA
 = 1, in Eqs. (3) and (7) axial conduction is included, and when cA

 = 0, axial conduction is neglected. 

When cA
 = 0, the solutions to Eqs.  (3) and (7) in terms of X

*
 do not depend on Pe.   

 

Non-dimensional boundary conditions 

, (0, ) 0p f Y 
    for  

1
0

2
Y  

 {inlet condition}                 (10) 
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0,
fdU

dY
 0

f

Y




    at   0Y   {symmetry condition}           (11) 

f p iU U U 
,  

1f pdU dU

dY dY


      at   

1

2 2

p
Y


  

          (12) 

f p i   
,  

1f p

Y Y

 



 


             at   

1

2 2

p
Y


  

          (13) 

0pU 
,   

p

Y





 

     at   1/ 2Y                     (14) 

*
0b

X


 



*
, ,

* * *

f p f p

X X

  



 


   at X
*
 ≥ X

*
fd  for -1/2 ≤ Y ≤ 1/2         (15) 

In Eq. (15), θb is defined by  

*

e
b

b e

T T

T T







 


                          (16) 

 

2.1 Local Nusselt number: 

 

The local Nusselt number at 1/ 2Y   (using Eq. (1)), Nupx is given by 

*

(2 ) 2px

px

f w

h H
Nu

k  
 


                      (17)

III. NUMERICAL SCHEME 

 

Solutions to non-dimensional energy Eqs. (3) and (7) 

along with the non-dimensional boundary conditions 

on θ given in Eqs. (10) to (15) have been obtained 

using the numerical scheme SAR given in  [13, 14 and 

15]. The scheme is basically the Gauss Siedel 

Successive Over-relaxation scheme, see, [16]. The 

terminology of SAR has been used by Dellinger [17]. 

Expressions for Up and Uf  have been taken from 

Bhargavi  and Sharath Kumar Reddy [15 and 18]. Also, 

Up and Uf can be easily obtained as analytical solutions 

to Eqs. (2)  and (6), applying the non-dimensional 

boundary conditions given in Eqs. (11) and (14) along 

with the interface condition at the porous-fluid region 

given by Eq. (12). 

 

IV. RESULT AND DISCUSSION 
 

We have assumed that ε = μf /μeff  = 1 and η = kf /keff = 

1.  

4.1 Thermal field:  

Variation  of θ profiles with Peclet number, Pe :  

Non-dimensional temperature in excess of wall 

temperature 
,w p w f    

 profiles at different axial 

locations for Da = 0.005 and γp = 0.4 are shown in Fig. 

2(a) to 2(f) respectively, for Peclet numbers, Pe = 5, 

10, 25, 50, 100 and Ac = 0, i.e., when axial conduction 

is neglected.  From Fig. 2, as X
*
 increases, w p 

 , 

w f 
 increases in both porous and fluid regions for 

all Peclet numbers. Fig. 2(e) {Pe = 100} and 2(f) { Ac = 

0} are almost identical except for very small X
*
 values, 

indicating that the effect of axial conduction is 

negligible when Pe ≥ 100. That is, if X
*
 is larger (say, = 

0.4), w p 
, w f 

 reaches to fully developed 

profiles which is available in [18] when Pe ≥ 100.  
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(c)                                                                                 (d) 

 
(e)                                                                                   (f) 

Figure 2: Variation of w p 
 , w f 

 profiles for different normalized non-dimensional axial distance (X
*
) values for 

0.4p 
 for (a) Pe = 5, (b) Pe = 10, (c) Pe = 25, (d) Pe = 50,  (e) Pe = 100  and  (f) Ac = 0, i.e., when axial conduction is 

neglected for Da = 0.005. 
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(c)                                                                                    (d) 

 
(e)                                                                                     (f) 

Figure 3: Variation of 
*

w 
vs. X

*
 for different Peclet numbers, Pe for  (a)

0p 
, (b)

0.2p 
, (c) 

0.4p 
 ,(d) 

0.6p 
, 

(e)  
0.8p 

 and  (f) 
1.0 p 

for Darcy number, Da = 0.05. 

 

4.2 Bulk mean temperature: 

Variation of 
*

w 
vs. X

*
, for, Pe = 5, 10, 25, 50 and 

100 for Da = 0.05 for γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 

presented in Fig. 3(a) to 3(f). From Fig. 3, effect of the 

Peclet number can be accessed.  For all X
*
, 

*

w 
  is 

lower for lower Pe. The effect of axial conduction thus 

results in the fluid getting less heated or less cooled.  

From Fig. 3(a) to 3(f), 
*

w 
increases as X

*
 increases 

for all Peclet numbers and porous fractions. As Peclet 

number increases, 
*

w 
 increases with  X

*
 values for 

all porous fractions. 

 

4.3 Variation of Local Nusselt number: 

Effect of Axial Conduction: 

 
(a)                                                                                  (b) 

Figure 4: Variation of (a) Nupx vs. X
*
 (b) Nupx vs. X for different Peclet numbers, Pe for porous fraction, 

0.2p 
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(a)                                                                                 (b) 

Fig. 5: Variation of (a) Nupx vs. X
*
 (b) Nupx vs. X for different Peclet numbers, Pe for porous fraction, 

0.8p 
. 

Variation of  Nupx vs. X
*
 and Nupx vs. X are shown in Fig. 4(a) and 4(b) for different Peclet numbers Pe = 5, 10, 25, 50, 100 

and Ac = 0 for Da = 0.05 and γp = 0.2. Variation of  Nupx vs. X
*
 and Nupx vs. X are shown in Fig. 5(a) and 5(b) for different 

Peclet numbers Pe = 5, 10, 25, 50, 100 and Ac = 0 for Da = 0.05 and γp = 0.8. From Figs. 4 and 5, Nupx, increases as Pe 

decreases at a fixed X
*
, whereas, Nupx decreases as Pe decreases at a fixed X = X

*
.Pe. This feature is similar to that followed 

by clear fluid channel. 
 

Comparison and Experimental Validation: 

 

Table 1: Comparing present values of Nupx for Peclet number, Pe =100 for porous fraction, γp = 0 with shah and London[10]. 

 

X
*
 0.002 0.008 0.02 0.04 0.125 0.2 0.3 0.4 

Present 20.732 12.859 10.063 8.832 8.249 8.236 8.235 8.235 

Shah and London[10] 19.113 12.604 9.988 8.803 8.246 8.235 8.235 8.235 

 

From the Table 1, the present values are found to be good agreement with literature values for  γp = 0. Comparing 

for γp  = 1.0 (fully filled with porous medium) with experimental values available in the literature [15 and 19]. 
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(c)                                                                                       (d) 

Figure 6: Variation of Nupx vs. γp at (a) X
*
 = 0.005 (b) X

*
 = 0.01 (c) X

*
 = 0.05 and (d) X

*
 = 0.1 for Pe = 5 at different Darcy 

numbers.

To examine further, a plot of Nupx with  γp for different 

Da values at (a) X
*
 = 0.005, (b) X

*
 = 0.01, (c) X

*
 = 0.05 

and (d) X
*
 = 0.1 for Pe = 5 is shown in Fig. 6. It is clear 

from Fig. 6, that the variation of Nupx with Da depends 

on γp. Nupx clearly increases as Darcy number increases 

when γp < 0.8, whereas, for γp > 0.8, Nupx decreases as 

Darcy number increases.  As Darcy number increases, 

Nupx, decreases for γp = 1.0, becoming equal to the clear 

fluid channel value for large Darcy number, Da. This 

fact is observed in thesis of Bhargavi [20] for different 

channel geometry in Chapter 3. Also, Nupx decreases as 

Pe increases with p γp, for all Da. Minimum value of 

Nupx depends on Da but is independent of Pe and X
*
. 

 

V. CONCLUSION 
 

Numerical solutions have been obtained for wide range 

of parameters, using SAR scheme ( [13], [14] and 

[15]). It has been concluded that the non-dimensional 

temperature profiles become independent of  Peclet 

number for Pe ≥ 100 indicates that the effect of axial 

conduction has become negligible. The downstream 

condition satisfied, by the clear fluid ducts, 
*/b X 
 

→ 0, has been found to be valid for partially filled with 

porous material channels also. This feature assumes 

importance since the flow and thermal fields are not 

symmetric when partially filled with porous material 

channel. Dimensionless bulk mean temperature excess 

of wall temperature, 
*

w 
, increases as X

*
 increases. 

*

w 
 decreases as Peclet number decreases. This 

indicates that a stronger axial conduction effect present 

at lower Peclet numbers makes the fluid get less heated 

or less cooled compared to when neglecting axial 

conduction.  

 The local Nusselt number values  are found to be 

good agreement with the values available in [10] for 

porous fraction, γp = 0. Nupx decrease as X
*
 increases 

for all γp and reach the fully developed values for X
*
 ≥ 

0.4. Similarly, Nupx increases as Pe decreases for a 

given X
*
. However, at a given X, Nupx decreases as Pe 

decreases. For Pe ≥ 100, the axial conduction effect 

becomes negligible except very near the entry. Nupx 

attains a minimum almost independent of Peclet 

number and X
*
. There exists an minimum porous 

fraction to attain low Nusselt number.  
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