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Abstract: The numerical investigation on heat transfer in the thermal entrance region of channel partially filled
with a porous medium with the effect of axial conduction subjected to the boundary condition uniform heat flux
have been studied. Porous insert attached adjacent to the both walls of the channel. The flow in the fluid and
porous region are governed by Poiseuille flow and Darcy-Brinkman model. The flow is assumed to be
unidirectional. The effect of the various parameters such as Darcy number, Peclet number and porous fraction on
the heat transfer coefficient has been studied. The local Nusselt number depends on the porous fraction. The effect
of the axial conduction is high when Peclet number is small in the entrance region of the channel.
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I. INTRODUCTION

Several studies (Agrawal [1]; Hennecke [2]; Vick and
Ozisik [3]; Jagadeesh Kumar [4]) have shown that axial
conduction term becomes significant in the equation of
energy at low Peclet number in the case of forced
convection in the ducts. Further, thermal field
significantly gets altered because of axial conduction.
Several researchers (Lundberg and Mccuen [5];
Worsoe-Schmidt [6]; Nguyen and Maclaine-cross [7];
Campo and Salazar [8]; Xiong [9]) studied the problem
of forced convection considering axial conduction
effect, under different conditions. In particular, Shah
and London [10] studied the problem of heat transfer
in the entrance region for a viscous incompressible
fluid in both two dimensional channel and circular
cylindrical tube taking into consideration axial
conduction term. Nguyen [11] studied same problem
under the wall boundary conditions of uniform
temperature and uniform heat flux. Nield, Kuznetsov
and Xiong [12] investigated the effects of viscous
dissipation, axial conduction with uniform temperature
at the walls, on thermally developing forced convection

X:X/H’ Y:y/H, Uf:uf/uref, Ui:ui/uref,upzup/uref, Pzp/purzef

heat transfer in a parallel plate channel fully filled with
a porous medium. Ramjee and Satyamurty [13] studied
local and average heat transfer in thermally developing
region of an asymmetrically heated channel.

In the present study, the effect of axial conduction in
the entrance region of channel partially filled with a
porous medium has been studied. It is assumed that the
flow is unidirectional and thermal field is developing.
Numerical solutions for the two dimensional energy
equations in both porous and fluid regions have been
obtained using successive accelerated replacement
(SAR) numerical scheme (Satyamurty and Bhargavi
[14]; Bhargavi and Sharath Kumar Reddy [15]). The
effects of key parameters on temperature and its
derived quantities such as bulk mean temperature and
local Nusselt number have been investigated.

Il. MATHEMATICAL
FORMULATION

The non-dimensional variables are following

: 1)

O =(T; —T)/(qH k) 6, =(T, =T.)/(qH /k;)
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In Eq.(1), ur and u, are the dimensional velocity in
fluid and porous regions. X and Y are the

dimensionless axial and normal coordinates. Us and U,
are the dimensionless velocity in fluid and porous
regions. p is the dimensional pressure and P is the
the dimensionless

dimensionless pressure. 6 is

Te - -
Fluid region

TREEERE

(a) Dimensional
Figure 1: Schematic diagram of the problem.
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temperature. s is the viscosity of the fluid, usws IS
effective viscosity of the porous. k; is the thermal
conductivity of the fluid, ke is the effective thermal
conductivity of the porous. y, is the porous fraction
defined as ratio of thickness of porous material and
width of the channel(i.e., I,/H).

(b) Non-dimensional

The non-dimensional governing equations and boundary conditions become(using Eg. (1)),

Fluid Region
U, _ dp
dy? 7 dX
00 0’0, 0°6
Uf f* = A 12 *fz + Zf
oX Pe® oX oY

Eg. (2), Re, the Reynolds number is defined by,
Re=pu. H/ 1

ref

)

©)

(4)

[1] Eq. (3), Peis the Peclet number and X is the normalized X, are defined

2] Pe=uH/ca, and X" =X /Pe
Porous Region

d’u

Zp—iUp:gRed—P
dy Da dXx
2 2

0. 20 1 1 70, O,
POX® npl " Pe?ax”  oY?

Eq. (6), Daand ¢ are defined as,
Da=% and & = u; | pg

Eq. (7) , n is defined as,
n =K Iky

(5)

(6)

(")

(8)

(9)

When A =1, in Egs. (3) and (7) axial conduction is included, and when A =0, axial conduction is neglected.

When A =0, the solutions to Eqgs. (3) and (7) in terms of X" do not depend on Pe.

Non-dimensional boundary conditions

—ESY <0

0, (0Y)=0 ¢ 2 {inlet condition}

(10)
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du, 296,
dy " oY at Y=0 {symmetry condition} (11)
du;, 1dU, _ 1.
Up=Up=Ui ay ¢ dv 4 2 2 (12)
20, 146, 1.7
ef zep :Hi, 8Y n OY at - 2 2 (13)
a0, B
Up:o, o 7 a Y=-1/2 (14)
8011 0= aef;p _ ef;p ae’:
oX oX 0 X atX'>Xy for-12<Y<1/2 (15)
In Eq. (15), 6, is defined by
T-T, 6
6’b = =
T,-T, 6 (16)
2.1 Local Nusselt number:
The Iocal Nusselt number at Y =—1/2(using Eq. (1)), Nu,, is given by
hp(2H) 2
Nu,, =
k, 6,-6 an
I1l. NUMERICAL SCHEME

Solutions to non-dimensional energy Egs. (3) and (7)
along with the non-dimensional boundary conditions
on @ given in Egs. (10) to (15) have been obtained
using the numerical scheme SAR given in [13, 14 and
15]. The scheme is basically the Gauss Siedel
Successive Over-relaxation scheme, see, [16]. The
terminology of SAR has been used by Dellinger [17].
Expressions for U, and U; have been taken from
Bhargavi and Sharath Kumar Reddy [15 and 18]. Also,
U, and U; can be easily obtained as analytical solutions
to Egs. (2) and (6), applying the non-dimensional
boundary conditions given in Egs. (11) and (14) along
with the interface condition at the porous-fluid region
given by Eq. (12).

IV. RESULT AND DISCUSSION
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We have assumed that & = us /uer = 1 and 5 = K¢ Kegs =
1

4.1 Thermal field:
Variation of é profiles with Peclet number, Pe :
Non-dimensional temperature in excess of wall

temperature O gp’ew Oy profiles at different axial
locations for Da = 0.005 and y, = 0.4 are shown in Fig.
2(a) to 2(f) respectively, for Peclet numbers, Pe = 5,
10, 25, 50, 100 and A; = 0, i.e., when axial conduction

is neglected. From Fig. 2, as X" increases, 0, =0, ,

0, =0; increases in both porous and fluid regions for
all Peclet numbers. Fig. 2(e) {Pe = 100} and 2(f) { A. =
0} are almost identical except for very small X values,
indicating that the effect of axial conduction is
negligible when Pe > 100. That is, if X" is larger (say, =

0.4), QW_HP, =0 reaches to fully developed
profiles which is available in [18] when Pe > 100.
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(e) 7, =08 and (f) 7, =10 for Darcy number, Da = 0.05.

4.2 Bulk mean temperature:

Variation of Ou—0

vs. X',

for, Pe = 5, 10, 25, 50 and

100 for Da = 0.05 for y, = 0, 0.2, 0.4, 0.6, 0.8 and 1.0
presented in Fig. 3(a) to 3(f). From Fig. 3, effect of the

Peclet number can be accessed. For all X,

0,—60 is

lower for lower Pe. The effect of axial conduction thus

4.3 Variation of Local Nusselt number:
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results in the fluid getting less heated or less cooled.

From Fig. 3(a) to 3(f),

number increases, W
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all porous fractions.

Effect of Axial Conduction:
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Figure 4: Variation of (a) Nuy vs. X~ (b) Nupy vs. X for different Peclet numbers, Pe for porous fraction,
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Fig. 5: Variation of (@) Nupy vs. X" (b) Nupy vs. X for different Peclet numbers, Pe for porous fraction, 7, =08
Variation of Nupy vs. X" and Nup, vs. X are shown in Fig. 4(a) and 4(b) for different Peclet numbers Pe =5, 10, 25, 50 100
and A, = 0 for Da = 0.05 and y, = 0.2. Variation of Nuj, vs. X" and Nu,, vs. X are shown in Fig. 5(a) and 5(b) for different

Peclet numbers Pe =5, 10, 25, 50, 100 and A, = 0 for Da = 0.05 and y, = 0.8. From Figs. 4 and 5, Nu,, increases as Pe
decreases at a fixed X, whereas, Nu, decreases as Pe decreases at a fixed X = X".Pe. This feature is similar to that followed
by clear fluid channel.

Comparison and Experimental Validation:

Table 1: Comparing present values of Nuy, for Peclet number, Pe =100 for porous fraction, y, = 0 with shah and London[10].

*

X 0.002 | 0.008 | 0.02 | 0.04 |0.125| 0.2 0.3 0.4
Present 20.732 | 12.859 | 10.063 | 8.832 | 8.249 | 8.236 | 8.235 | 8.235
Shah and London[10] | 19.113 | 12.604 | 9.988 | 8.803 | 8.246 | 8.235 | 8.235 | 8.235

From the Table 1, the present values are found to be good agreement with literature values for y,= 0. Comparing
for y, = 1.0 (fully filled with porous medium) with experimental values available in the literature [15 and 19].

44 T 1 1 1 1 T I T 30 T I 1 1 1 1 T I T
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Figure 6: Variation of Nuy, vs. y, at (a) X" = 0.005 (b) X" = 0.01 (c) X" = 0.05 and (d) X" = 0.1 for Pe = 5 at different Darcy
numbers.

To examine further, a plot of Nu,, with y, for different
Da values at (a) X" = 0.005, (b) X = 0.01, (c) X = 0.05
and (d) X" = 0.1 for Pe =5 is shown in Fig. 6. It is clear
from Fig. 6, that the variation of Nu,, with Da depends
on y,. Nuyy clearly increases as Darcy number increases
when y, < 0.8, whereas, for y, > 0.8, Nu,, decreases as
Darcy number increases. As Darcy number increases,
Nu,,, decreases for y, = 1.0, becoming equal to the clear
fluid channel value for large Darcy number, Da. This
fact is observed in thesis of Bhargavi [20] for different
channel geometry in Chapter 3. Also, Nu,, decreases as
Pe increases with p y,, for all Da. Minimum value of
Nu,x depends on Da but is independent of Pe and X

V. CONCLUSION

Numerical solutions have been obtained for wide range
of parameters, using SAR scheme ( [13], [14] and
[15]). It has been concluded that the non-dimensional
temperature profiles become independent of Peclet
number for Pe > 100 indicates that the effect of axial
conduction has become negligible. The downstream

condition satisfied, by the clear fluid ducts, 06, 1 X

— 0, has been found to be valid for partially filled with
porous material channels also. This feature assumes
importance since the flow and thermal fields are not
symmetric when partially filled with porous material
channel. Dimensionless bulk mean temperature excess

6,6

of wall temperature, , increases as X~ increases.

0, —0 decreases as Peclet number decreases. This
indicates that a stronger axial conduction effect present
at lower Peclet numbers makes the fluid get less heated
or less cooled compared to when neglecting axial
conduction.

The local Nusselt number values are found to be
good agreement with the values available in [10] for
porous fraction, y, = 0. Nuy, decrease as X~ increases
for all y, and reach the fully developed values for X" >
0.4. Similarly, Nuy increases as Pe decreases for a

www.ijatca.

given X". However, at a given X, Nu,, decreases as Pe
decreases. For Pe > 100, the axial conduction effect
becomes negligible except very near the entry. Nupy
attains a minimum almost independent of Peclet
number and X. There exists an minimum porous
fraction to attain low Nusselt number.
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