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Abstract: This manuscript discuss about the dual nature of solution, in MHD outer velocity flow, along with the 

stability analysis on stretching cylinder with partial slip. Differential equations are acquired by converting heat 

and momentum governing equations with similarity transformations. The numerical solutions of the transformed 

equations were computed by the Runge-Kutta Fehlberg scheme using shooting procedure. For stretching 

cylindrical surface, we obtained that the solution is not unique having partial slip. The dual nature of the solution 

exists in small range of outer velocity parameter on stretching surface. Stability analysis reveals that for lower 

branch (unstable solution) and upper branch (stable solution), the smallest eigenvalue is negative and positive 

respectively for the distinct entries of outer velocity parameter. The limit of the dual solution is -0.03211 = 

𝝀𝒄 ≤ 𝝀 ≤ 𝝀𝒓= 0.12651 for slip parameter, 𝑽 =  𝟎. 𝟏. Also, the influences of slip parameter, outer velocity 

parameter and magnetic parameter have been discussed on heat and flow transportation, which are presented 

through tables and figures. 
 

Keywords: Partial slip, Stretching cylinder, MHD, Stability analysis. 

 

I. INTRODUCTION 
 

Numerous practical applications of heat and flow 

transportation in several divisions of manufacturing 

procedure lead attention of many researchers in this 

field of stretching surface. During these processes, 

sometimes the strips are stretched thereby affecting the 

final product. Therefore, for researchers, study of heat 

and flow transportation has acquired much 

consideration over stretching surfaces because of their 

industrial applications in polymer extrusion, wire 

drawing and paper production etc. The impact of flow 

behavior over a stretched sheet was initiated by Crane 

(1970). Due to wide-ranging applications of stretching 

material in manufacturing processes, researchers got 

interested in investigating the rate of transference of 

heat over stretching surfaces (Gupta and Gupta, 1977; 

Ali, 1994; Singh et al., 2010) as an extension of Crane 

(1970) in the field of heat transfer. There are many 

physical/industrial phenomenons in which the 

boundary surface closely resembles cylindrical 

geometry. In such processes, the impacts of heat and 

flow transportation over cylindrical stretched surfaces 

are essential. These processes comprise of wire 

drawing, hot rolling, and spinning of fibers etc. 

 

The applications of stretching surfaces in industries 

includes polymer extrusion process, paper production 

etc. Therefore, the flow characteristics over static and 

stretching cylinder have been initiated by Lin and Shih 

(1980) and Wang (1988) respectively. Magnetic field 

plays a significant role in many industrial applications 

like petroleum refining, power generation, and cooling 

of objects etc. The MHD effect over a stretching 

cylinder has been studied by Ishak et al. (2008) and its 

few extensions have been reported in (Vajravelu et al., 

2012; Yadav and Sharma, 2014; Malik et al., 2015) 

with different physical conditions. These studies have 

confirmed that fluid velocity is strongly influenced by 

magnetism. In some manufacturing processes, which 

involve process of filtration and controlling of heat 

generation, the effect of outer flow becomes 

significant. The effect of free stream flow on heat and 

mass transportation over vertical and horizontal 

cylinder has been studied by Takhar et al. (2000) and 
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Lok et al. (2012) respectively. None of the studies cited 

above has reported the existence of dual solution and 

carried out stability analysis. The stability analysis flow 

solution about stagnation-point over stretching surfaces 

has been discussed in detail in (Paullet and Weidman, 

2007; Mahapatra et al., 2012; Sharma et al., 2014; 

Dhanai et al., 2015; Awaludin et al., 2016). Poply et al. 

(2018) reported that the dual solution exist for 

stretching cylindrical surfaces. 

 

In all of the above studies mentioned so far, the partial 

slip flow has not been considered. Partial slip occur 

when the fluid contains particulates; for example, 

suspensions, emulsions, polymer solutions and foams. 

The partial slip fluids are important in manufacturing 

processes, like spinning motion and filtration process. 

Therefore, the effect of slip velocity on stretching 

surfaces has been discussed by (Andersson, 2002; 

Ariel, 2008). The effect of slip flow on stretching 

cylinder in quiescent fluid has been examined in (Wang 

and Ng, 2011; Mukhopadhyay, 2013; Mat et al., 2015) 

and they reported that velocity of the fluid reduces in 

presence of slip surface. Critical values in slip flow in a 

non-Newtonian nanofluid have been reported by 

Dhanai et al. (2016).  

 

The above literature survey reveals that no study had 

discussed so far, for stretching cylindrical surface, for 

calculating the flow stability in outer fluid MHD flow 

with partial slip. In current analysis, we investigate the 

same effect and results of this investigation explains 

that the smallest eigenvalue approaches to zero for both 

unstable and stable solution as the outer velocity 

parameter approaches to the critical point of outer 

velocity parameter. 

 

II. PROBLEM FORMULATION 
 

We have considered a electrical conducting, partial 

slip, axisymmetric steady flow of a non-compressible 

fluid over stretching cylinder having constant radius a 

(Figure 1). The magnetic field applied radially with 

intensity 𝐵𝑜 . Due to the applied magnetic field, the 

magnetic field which is induced being very small and 

that can be neglected. The stretching surface 

temperature 𝑇𝑤  𝑥  and velocity 𝑢𝑤 (𝑥) are prescribed 

according to the following expressions: 

 

𝑇𝑤  𝑥 = 𝑇∞ + 𝑇0  
𝑥

𝑙
 
𝑛

   and   𝑢𝑤  𝑥 = 𝑐  
𝑥

𝑙
 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Schematic diagram 

 

Here, 𝑛 be exponent of temperature. The governing equations of above considered problem are described as: 
𝜕(𝑟𝑢)

𝜕𝑥
+
𝜕(𝑟𝑢)

𝜕𝑟
= 0                                                                                                                               (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑟
= 𝑈

𝜕𝑈

𝜕𝑥
+
𝜈

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑢

𝜕𝑟
 −

𝜎𝐵0
2

𝜌
(𝑢 − 𝑈)                                                                     (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑟
=

𝛼

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑇

𝜕𝑟
                                                                                                                 (3) 

 

where velocity along 𝑟 and 𝑥- axes are taken as 𝑣 and 𝑢 respectively.𝜈, 𝐵0, 𝜌, 𝜎, U, T and 𝛼 

be the kinematic viscosity, magnetic field strength, density, electrical conductivity, outer velocity, temperature and 

thermal diffusivity respectively. 
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The relevant restrictions on boundary are: 

 
𝐴𝑡  𝑟 = 𝑎, 𝑇 = 𝑇𝑤  𝑥 , 𝑢 = 𝑢𝑤 𝑥 + 𝑉𝑜𝜈

𝜕𝑢

𝜕𝑟
  𝑎𝑛𝑑  𝑣 = 0  

𝐴𝑠 𝑟 → ∞, 𝑇 → 𝑇∞  𝑎𝑛𝑑 𝑢 → 𝑈 = 𝑏  
𝑥

𝑙
 

                                                       (4)  

Here, 𝑉𝑜  represents slip velocity. 

 

Writing 𝑣 and 𝑢 in terms of  𝜓(𝑥, 𝑟) (stream function) as  𝑣 = −
1

𝑟

𝜕𝜓

𝜕𝑥
 𝑎𝑛𝑑 𝑢 =

1

𝑟

𝜕𝜓

𝜕𝑟
 

the continuity equation (1) is satisfied. 

 

Introducing similarity variables 

𝜂 =
𝑟2−𝑎2

2𝑎
 

𝑢𝑤

𝜈𝑥
, 𝜓 =  𝑢𝑤 𝜈𝑥𝑎𝑓 𝜂  𝑎𝑛𝑑 𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 (dimensionless temperature), the equation (2) and (3) are 

transformed as 

 1 + 2𝛾𝜂 𝑓 ′′′ + 2𝛾𝑓′′ + 𝑓𝑓 ′′ − 𝑓 ′ 2
−𝑀 𝑓 ′ − 𝜆 + 𝜆2 = 0                                                   (5) 

 1 + 2𝛾𝜂 𝜃′′ + 2𝛾𝜃 ′ + Pr 𝑓𝜃 ′ − 𝑛𝑓 ′𝜃 = 0                                                                              (6) 
The transformed conditions on the boundary are: 

 
𝜃 0 = 1, 𝑓 ′ 0 = 1 + 𝑉𝑓 ′′  0 , 𝑓 0 = 0

𝜃 ∞ = 0, 𝑓 ′ ∞ = 𝜆
                                                                                    (7) 

where 𝛾 =
1

𝑎
  

𝜈𝑙

𝑐
  , 𝑉 = 𝑉𝑜 

𝑐𝜈

𝑙
 , 𝑃𝑟 =

𝜈

𝛼
, 𝜆 =  

𝑏

𝑐
  𝑎𝑛𝑑 𝑀 =

𝜎𝐵0
2𝑙

𝜌𝑐
   represents the curvature parameter, slip 

parameter, Prandtl number, outer velocity parameter and magnetic parameter respectively. 

The Nusselt number 𝑁𝑢  and coefficient of skin friction 𝐶𝑓  are described as 

𝑁𝑢 = − 𝑅𝑒𝑥 𝜃′ 0  𝑎𝑛𝑑 𝐶𝑓 =
2𝑥 𝑓 ′′ (0)

 𝑅𝑒
  

 

where 𝑅𝑒(= 𝑙𝑐 𝜈)  represents the Reynolds number. 

 

 

III. STABILITY ANALYSIS 

 

Unsteady case is considered for analyzing the flow 

stability and equations (2) and (3) are rewritten as: 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑟

= 𝑈
𝜕𝑈

𝜕𝑥
+
𝜈

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑢

𝜕𝑟
 −

𝜎𝐵0
2

𝜌
(𝑢

− 𝑈)                                                    (8) 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑟
=

𝛼

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑇

𝜕𝑟
                             (9) 

 

For solving the above system of equations, we add 

𝜏(= (
𝑐

𝑙
)𝑡) along with 𝜂, 𝜓 𝑎𝑛𝑑 𝜃 as a similarity 

variable. By applying similarity variables, the 

equations (8) and (9) are reduced to 

 1 + 2𝛾𝜂 
𝜕3𝑓

𝜕𝜂3
+ 2𝛾

𝜕2𝑓

𝜕𝜂2
+ 𝑓

𝜕2𝑓

𝜕𝜂2
−  

𝜕𝑓

𝜕𝜂
 

2

−𝑀 
𝜕𝑓

𝜕𝜂
− 𝜆 + 𝜆2 −

𝜕2𝑓

𝜕𝜂𝜕𝜏
= 0                                              (10) 

 

 1 + 2𝛾𝜂 
𝜕2𝜃

𝜕𝜂2
+ 2𝛾

𝜕𝜃

𝜕𝜂
+ 𝑃𝑟  𝑓

𝜕𝜃

𝜕𝜂
− 𝑛

𝜕𝑓

𝜕𝜂
𝜃 −

𝜕𝜃

𝜕𝜏
= 0                                                       (11) 

and corresponding boundary restrictions become 

𝜃 0, 𝜏 = 1, 𝑓 0, 𝜏 = 0,
𝜕𝑓

𝜕𝜂
 0, 𝜏 

= 1 + 𝑉
𝜕2𝑓

𝜕𝜂2
 0, 𝜏 ,                                 

 

𝜃 ∞, 𝜏 = 0,
𝜕𝑓

𝜕𝜂
 ∞, 𝜏 

= 𝜆                                                     (12) 
 

We consider, 𝑓 𝜂 = 𝑓0(𝜂) and 𝜃 𝜂 = 𝜃0(𝜂) as a 

solution of equations (1)-(4), and follow the method of 

Merkin (1985) by adopting 

 

𝑓 𝜂, 𝜏 = 𝑓0 𝜂 +  𝑒−𝑠𝜏𝐹 𝜂, 𝜏  and  𝜃 𝜂, 𝜏 = 𝜃0 𝜂 +
 𝑒−𝑠𝜏𝐺 𝜂, 𝜏                              (13) 
 

where 𝑠 represents eigenvalue, and 𝐹(𝜂, 𝜏) and 𝐺 𝜂, 𝜏  
are assumed to be insignificant in respect of 𝑓0 𝜂  and 

𝜃0 𝜂 . Solutions of problem (10)-(12) gives an 

unbounded eigenvalues as 𝑠1  <  𝑠2  <  … The negative 

and positive smallest eigenvalue indicates an initial 

growth and decay in the disturbance respectively and 

thus the flow is unstable and stable accordingly. 
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Substituting equation (13) in equations (10)-(12), we get 

 1 + 2𝛾𝜂 
𝜕3𝐹

𝜕𝜂3
+  2𝛾 + 𝑓0 

𝜕2𝐹

𝜕𝜂2
+ 𝑓0

′′𝐹 − (2𝑓0
′ − 𝑠 + 𝑀) 

𝜕𝐹

𝜕𝜂
 −

𝜕2𝐹

𝜕𝜂𝜕𝜏
= 0                      (14) 

 1 + 2𝛾𝜂 
𝜕2𝐺

𝜕𝜂2
+ 2𝛾

𝜕𝐺

𝜕𝜂
+ 𝑃𝑟  𝑓0

𝜕𝐺

𝜕𝜂
+ 𝜃0

′ 𝐹 − 𝑛  𝑓0
′𝐺 + 𝜃0

𝜕𝐹

𝜕𝜂
  + 𝑠𝐺 −

𝜕𝐺

𝜕𝜏
= 0             (15) 

along with restrictions on the boundary are 

 
 
 

 
 𝐹 0, 𝜏 = 0,   

𝜕𝐹

𝜕𝜂
 0, 𝜏 = 𝑉

𝜕2𝐹

𝜕𝜂2
 0, 𝜏 , 𝐺 0, 𝜏 = 0   

𝜕𝐹

𝜕𝜂
 ∞, 𝜏 → 0, 𝐺(∞, 𝜏) → 0

                                                                (16)     

 

As mentioned in [16, 19], the stability of the solution is 

analyzed and hence F(𝜂) = 𝐹0(𝜂) and G(𝜂) = 𝐺0(𝜂) in 

equations (14)-(15) to check decay or growth of initial 

solution of equation (13). For this, linearized 

eigenvalue problem (17)-(18) has been solved: 

 

 1 + 2𝛾𝜂 𝐹0
′′′ +  2𝛾 + 𝑓0 𝐹0

′′ + 𝑓0
′′𝐹0 − (2𝑓0

′ − 𝑠 + 𝑀)𝐹0′ = 0                                           (17) 

 

 1 + 2𝛾𝜂 𝐺0
′′ + 2𝛾𝐺0

′ + Pr⁡[𝑓0𝐺0
′ + 𝜃0

′𝐹0 − 𝑛 𝑓0
′𝐺 + 𝜃0𝐹0

′  + 𝑠𝐺 = 0                                (18) 

along with the restrictions on the boundary are 

 

  
𝐹0 0 = 0, 𝐹0

′  0 = 𝑉, 𝐺0 0 = 0

𝐹0
′ (∞) = 0, 𝐺0 ∞ = 0  

                                                                                                                      (19)  

 

For flow stability solution 𝐹0 𝜂  and 𝜃0(𝜂), it should 

be noted that for a fixed entry of 𝑉 , 𝑃𝑟, 𝛾,𝑀 and 𝑠, we 

determine the smallest 𝑠, suggested by Harris et al. 

(2009), we solve the equations (17)-(19). 

 

IV. RESULT AND DISCUSSION 
 

The boundary value problem consisting of the 

differential equations (5)-(6) along with boundary 

restrictions (7) has been computed numerically, using 

Runge-Kutta Fehlberg method with the shooting 

technique. Based on the computed results, an analysis 

of flow and heat transfer has been done for distinct 

fluid parameters. The results have been presented in 

terms of figures and tables. 

 

Figure 2 shows the dual nature of the solution exists in 

flow transportation for 𝜆 > 0 in presence of 𝑉. The 

upper branch (depicted by solid line) represents a stable 

velocity profile. On the other side, the lower branch 

(depicted by dashed line) represents an unstable 

velocity profile. Also, the velocity profile shows an 

asymptotic behavior for both stable and unstable 

solutions (Figure 2). 
 

 

Table 1: Smallest eigenvalues 𝑠 at different 𝜆 when 𝑃𝑟 =  1, 𝛾 =  0.01, 𝑛 =  0.5, 𝑉 =  0.1 and 𝑀 =  0.01 

 

𝝀 Upper Solution Lower Solution 

-0.03 0.0063 -0.0067 

0 0.2016 −0.0940 

0.03 0.4160 −0.1745 

0.04 0.4741 −0.1979 

0.05 0.5290 −0.2177 

0.06 0.5821 −0.2392 

0.08 0.6803 −0.2745 

 

Further, the limit of the unstable solution and critical 

point for λ has been found in the presence of slip 

velocity parameter 𝑉  =  0.1.  Figure 3 demonstrates 

the variation in 𝑓 ′′ (0) against the outer velocity 

parameter λ in presence of slip velocity. The critical 

point (𝜆𝑐  =  −0.03211) and limit of the dual solution 

is 𝜆 𝑐 ≤  𝜆 ≤  𝜆𝑟  =  0.12651, when 𝑉  =  0.1, are 

clearly presented in Figure 3. Table 1 represents the 

smallest eigenvalue 𝑠 for stable and unstable solution 

with distinct entries of outer velocity parameter 𝜆. The 

result described in Table 1 explains that 𝑠 has negative 

outcomes for unstable solution and positive for stable 

one. Also, the outcomes of 𝑠 approaching zero when 𝜆 

approaches to the critical point. Further, the analysis 

has been done only for the stable solution for distinct 

fluid parameters. 

 



Vikas Poply, International Journal of Advanced Trends in Computer Applications (IJATCA) 

Special Issue 1 (1), July - 2019,  pp. 194-203 

ISSN: 2395-3519  

www.ijatca.com                                                                                        198 

The plots of velocity profile for various entries of 𝛾 in 

presence of slip parameter 𝑉 =  0.2 are shown in 

Figures 4, 5 and 6 for distinct entries of outer velocity 

parameter 𝜆 =  0, 0.5 and 2 respectively. Figures 4-5 

explain that, in existence of slip velocity, fluid velocity 

reduces slightly with increasing 𝛾 up to a certain 

distance near the stretching surface and then a phase 

transition occurs, thereafter the fluid velocity curves 

show trend reversal with increase in γ. This phase 

transition in fluid velocity occurs with increasing 𝛾, 

near the stretching surface due to the presence of slip 

velocity. On the other hand, for 𝜆 >  1 (Figure 6), we 

observed a completely opposite trend but still having a 

phase transition. Therefore, in all situations of (𝜆 =
 0, 0.5, 2), a transformation of stage occurs in velocity 

profiles which clearly demonstrates the role of slip 

effect near the surface. 
 

 

 

Figure 2: 𝑓 ′ 𝜂  for 𝜆 = 0.1 when 𝑉 =
 0.1, 𝑃𝑟 = 1, 𝛾 = 0.01, 𝑛 = 0.5 and 𝑀 =

 0.01 

Figure 3: Variation in 𝑓 ′′ (0) for 𝜆 = 0.1 

when 𝑉 =  0.1, 𝑃𝑟 = 1, 𝛾 = 0.01, 𝑛 = 0.5  
and 𝑀 =  0.01 

    
 

Figure 4: 𝑓 ′ 𝜂  for distinct entries of 𝛾 with 𝑉 = 0.2, when 𝜆 =  0. 
Figure 5: 𝑓 ′ 𝜂  for distinct entries of 𝛾 with 𝑉 = 0.2, when 𝜆 =  0.5 

 

 

Figures 7, 8 and 9 show the effects of 𝛾 (in existence of 

slip velocity) on the temperature profiles for  𝜆 =
 0, 0.5 and 2 respectively. In all situations, the decrease 

in temperature gradient in noticed. Thus, tem- perature 

rises with increasing 𝛾. Further, we noticed that the 

transition point appears in all the three cases, just as in 

the velocity profiles (Figures 4-6).  
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Figure 6: 𝑓 ′ 𝜂  for distinct entries of 𝛾 with 

𝑉 = 0.2, when 𝜆 =  2 

Figure 7: 𝜃 𝜂  for distinct entries of 𝛾 with 

𝑉 = 0.2, when 𝜆 = 0
Table 2: Computed results of 𝑓 ′′ (0) and −𝜃′(0) for distinct 𝛾 and 𝑉 for 𝑃𝑟 =  7, 𝑛 =  0 𝑎𝑛𝑑 𝑀 = 0 

 

  𝑉 = 0 𝑉 = 0.2 

𝜆 𝛾 𝑓 ′′(0) −𝜃′(0) 𝜆 𝛾 

0 0 −1.00001 1.89534 0 0 

0 0.5 −1.18459 2.05619 0 0.5 

0 1 −1.36386 2.21193 0 1 

0.5 0 −0.66726 1.98146 0.5 0 

0.5 0.5 −0.77611 2.16816 0.5 0.5 

0.5 1 −0.87584  2.35102 0.5 1 

2 0 2.01749 2.38607 2 0 

2 0.5 2.26076 2.61919 2 0.5 

2 1 2.48567 2.84067 2 1 
 

Table 2: gives the computed outcomes of  −𝜃 ′ 0 (∝
𝑁𝑢) and  𝑓 ′′(0)(∝ 𝐶 𝑓) for distinct entries of  𝛾 and 𝜆, 

having slip (𝑉  =  0.2) and no-slip (𝑉  =  0) 

condition.  The 𝑓 ′′(0) values are negative for 𝜆 <  1, 

as it exerts a drag on the surface. Also, from Table 2, 

we noticed that with increasing 𝑉 , 𝐶𝑓  increases and 𝑁𝑢  

decreases when 𝜆 <  1. Thus friction increases which 

resulting a decline in velocity when 𝜆 <  1. 

    
 Figure 8: θ(η) for distinct entries of γ with V=0.2,  

when λ = 0.5 

Figure 9: θ(η) for distinct entries of γ with V=0.2,  

when λ = 2 
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The fluid velocity (Figures 4 and 5) increases for 

𝜆 <  1 (after the transition point) because the value of 

the skin friction reduces with increasing γ whereas for 

𝜆 =  2, we found a rever- sal trend (Figure 6) due to 

the opposite variations observed in the 𝑓 ′′(0). In 

addition, we see from Table 2 that 𝑁𝑢  raises with 

increasing γ entries for each λ. 

 

Figures 10, 11 and 12 give the plots of velocity profile 

for 𝜆 =  0, 𝜆 =  0.5 and 𝜆 =  2 respectively for 

distinct entries of magnetic parameter 𝑀, with slip 

condition at the surface. The clear separation of curves 

in each figure demonstrates the significant effect of 

magnetic field on the fluid flow in existence of partial 

slip condition. The existence of magnetic field causes a 

retardation in the fluid velocity (shown by the arrow in 

Figures 10 and 11) when 𝜆 <  1, while the impact of 

outer velocity dominates over magnetic impact when 

𝜆 >  1, as seen from the opposite trend of velocity for 

𝜆 >  1 (Figure 12). 

 

 

 

    
Figure 10: 𝑓 ′ 𝜂  for distinct entries of 𝑀 with 𝑉 = 0.2, 

when 𝜆 =  0 

Figure 11: 𝑓 ′ 𝜂  for distinct entries of 𝑀 with 𝑉 = 0.2, 

when 𝜆 =  0.5 

 
Figure 12: 𝑓 ′ 𝜂  for distinct entries of 𝑀 with 𝑉 = 0.2, when 𝜆 =  2 

Figure 13: 𝜃 𝜂  for distinct entries of 𝑀 with 𝑉 = 0.2, when 𝜆 = 0 

 
Table 3: Computed results of −𝜃′(0) and 𝑓 ′′  0  for distinct entries of 𝑀 when 𝛾 =  0.5, 𝑃𝑟 =  7, 𝑛 =  0.5 and 𝑉 =  0.2. 

 

𝜆 𝑀 −𝜃′(0) 𝑓 ′′  0  
0 0 2.47176 -0.89621 

0 1 2.26424 -1.17917 

0 2 2.11381 -1.36415 

0.5 0 2.68989 -0.57964 

0.5 1 2.64240 -0.67535 

0.5 2 2.60717 -0.74758 

2 0 3.60278 1.59258 

2 1 3.63188 1.69564 

2 2 3.65583 1.78417 
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Table 3 gives computed values of – 𝜃′(0) and 𝑓 ′′(0) for distinct entries of 𝑀. 

 

We notice that as we increase the outer velocity 

parameter 𝜆, the variation of magnetic field has a lesser 

effect on skin friction coefficient. The magnetic field 

opposes the transport phenomenon because when we 

increase magnetism, the Lorentz force increases and it 

offers large interruptions to the transport phenomenon 

and indirectly leads to rise in the temperature 

(displayed in Figure 13), as we rise the magnetic 

intensity. Table 3 gives the computed values of 𝐶𝑓  and 

𝑁𝑢  for distinct entries of 𝑀 in absence and presence of 

𝜆. For all 𝜆, as we increase 𝑀 the magnitude of 𝐶𝑓  

increases whereas 𝑁𝑢   increases for 𝜆 >  1 and 

decreases for 𝜆 <  1. 

 

  
                     Figure 14: 𝑓 ′ 𝜂  for distinct 𝑉 when 𝜆 = 0 Figure 15: 𝑓 ′ 𝜂  for distinct 𝑉 when 𝜆 =  0.5

    
                    Figure 16: 𝑓 ′ 𝜂  for distinct 𝑉 when 𝜆 =  2 

 

Figure 17: 𝜃 𝜂  for distinct 𝑉 when 𝜆 = 0

   
Figure 18: 𝜃 𝜂  for distinct 𝑉 when 𝜆 = 0.5                       Figure 19: 𝜃 𝜂  for distinct 𝑉 when 𝜆 = 2 

 

Figures 14, 15 and 16 depicted curves of velocity for 

different entries of 𝑉 for distinct 𝜆. We observe that as 

𝑉 increases, there is a reduction (shown by the arrow) 

in velocity (Figure 14 and 15) for 𝜆 <  1, while a 

reverse trend is noticed for 𝜆 >  1 (Figure 16). The 

magnitude of velocity gradient decreases as we move 

away from the surface and ultimately vanishes. 

Figures 17, 18 and 19 represent the temperature curves 

for different entries of V with different 𝜆. The rise in 

temperature is noticed with increasing 𝑉 when 𝜆 <  1 

(Figures 17 and 18), while decline in temperature is 
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noticed for 𝜆 >  1 (Figure 19). A quick comparison of 

the velocity curves (Figures 14-16) and the temperature 

curves (Figures 17-19) showing impact of partial slip 

indicates that the velocity curves with greater 

separation are affected more by the partial slip. 

 

V. CONCLUSION 
 

In this paper, we have formulated and solved 

numerically the heat and flow transportation problem 

of an MHD outer velocity flow over a progressively 

stretching cylinder in horizontal direction with partial 

slip. The key findings are: 

1. Results clearly show the existence of dual nature 

of the solution. Stable and unstable solution is given by 

upper and lower branch. 

2. The limit of the unstable solution is given as 

−0.03211 ≤ 𝜆 ≤  0.12651 for 𝑉 =  0.1. 

3. Slip effect shows a transition point in velocity 

profiles when we increase the curvature parameter 

values. 

4. Smallest eigenvalue for stable solution is positive 

and for unstable solution is negative for different outer 

velocity parameter 𝜆. 
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