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Abstract: This manuscript discuss about the dual nature of solution, in MHD outer velocity flow, along with the
stability analysis on stretching cylinder with partial slip. Differential equations are acquired by converting heat
and momentum governing equations with similarity transformations. The numerical solutions of the transformed
equations were computed by the Runge-Kutta Fehlberg scheme using shooting procedure. For stretching
cylindrical surface, we obtained that the solution is not unique having partial slip. The dual nature of the solution
exists in small range of outer velocity parameter on stretching surface. Stability analysis reveals that for lower
branch (unstable solution) and upper branch (stable solution), the smallest eigenvalue is negative and positive
respectively for the distinct entries of outer velocity parameter. The limit of the dual solution is -0.03211 =
A. <A< A,= 0.12651 for slip parameter, V = 0.1. Also, the influences of slip parameter, outer velocity
parameter and magnetic parameter have been discussed on heat and flow transportation, which are presented
through tables and figures.
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flow transportation over cylindrical stretched surfaces
are essential. These processes comprise of wire
drawing, hot rolling, and spinning of fibers etc.

I. INTRODUCTION

Numerous practical applications of heat and flow
transportation in several divisions of manufacturing
procedure lead attention of many researchers in this
field of stretching surface. During these processes,

The applications of stretching surfaces in industries
includes polymer extrusion process, paper production

sometimes the strips are stretched thereby affecting the
final product. Therefore, for researchers, study of heat
and flow transportation has acquired much
consideration over stretching surfaces because of their
industrial applications in polymer extrusion, wire
drawing and paper production etc. The impact of flow
behavior over a stretched sheet was initiated by Crane
(1970). Due to wide-ranging applications of stretching
material in manufacturing processes, researchers got
interested in investigating the rate of transference of
heat over stretching surfaces (Gupta and Gupta, 1977;
Ali, 1994, Singh et al., 2010) as an extension of Crane
(1970) in the field of heat transfer. There are many
physical/industrial  phenomenons in  which the
boundary surface closely resembles cylindrical
geometry. In such processes, the impacts of heat and

etc. Therefore, the flow characteristics over static and
stretching cylinder have been initiated by Lin and Shih
(1980) and Wang (1988) respectively. Magnetic field
plays a significant role in many industrial applications
like petroleum refining, power generation, and cooling
of objects etc. The MHD effect over a stretching
cylinder has been studied by Ishak et al. (2008) and its
few extensions have been reported in (Vajravelu et al.,
2012; Yadav and Sharma, 2014; Malik et al., 2015)
with different physical conditions. These studies have
confirmed that fluid velocity is strongly influenced by
magnetism. In some manufacturing processes, which
involve process of filtration and controlling of heat
generation, the effect of outer flow becomes
significant. The effect of free stream flow on heat and
mass transportation over vertical and horizontal
cylinder has been studied by Takhar et al. (2000) and
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Lok et al. (2012) respectively. None of the studies cited
above has reported the existence of dual solution and
carried out stability analysis. The stability analysis flow
solution about stagnation-point over stretching surfaces
has been discussed in detail in (Paullet and Weidman,
2007; Mahapatra et al., 2012; Sharma et al., 2014;
Dhanai et al., 2015; Awaludin et al., 2016). Poply et al.
(2018) reported that the dual solution exist for
stretching cylindrical surfaces.

In all of the above studies mentioned so far, the partial
slip flow has not been considered. Partial slip occur
when the fluid contains particulates; for example,
suspensions, emulsions, polymer solutions and foams.
The partial slip fluids are important in manufacturing
processes, like spinning motion and filtration process.
Therefore, the effect of slip velocity on stretching
surfaces has been discussed by (Andersson, 2002;
Ariel, 2008). The effect of slip flow on stretching
cylinder in quiescent fluid has been examined in (Wang
and Ng, 2011; Mukhopadhyay, 2013; Mat et al., 2015)
and they reported that velocity of the fluid reduces in
presence of slip surface. Critical values in slip flow in a
non-Newtonian nanofluid have been reported by

T, () =T +To (2)
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Dhanai et al. (2016).

The above literature survey reveals that no study had
discussed so far, for stretching cylindrical surface, for
calculating the flow stability in outer fluid MHD flow
with partial slip. In current analysis, we investigate the
same effect and results of this investigation explains
that the smallest eigenvalue approaches to zero for both
unstable and stable solution as the outer velocity
parameter approaches to the critical point of outer
velocity parameter.

Il. PROBLEM FORMULATION

We have considered a electrical conducting, partial
slip, axisymmetric steady flow of a non-compressible
fluid over stretching cylinder having constant radius a
(Figure 1). The magnetic field applied radially with
intensity B,. Due to the applied magnetic field, the
magnetic field which is induced being very small and
that can be neglected. The stretching surface
temperature T,,(x) and velocity u,, (x) are prescribed
according to the following expressions:

and u, (x) =c G)

o
V, [t
‘_.

Uw
rva

Figure 1: Schematic diagram

Here, n be exponent of temperature. The governing equations of above considered problem are described as:

d(ru) 0(ru) _

0x + Jar =0 )
6u+ ou 6U+v6< 6u> oB¢ U 5
”ax ”ar_ dx ror rar p (u ) @
6T+ T ad ( 6T> 3
”ax var_rar r(’)r ®

where velocity along r and x- axes are taken as v and u respectively.v,By p,o,U,T and «
be the kinematic viscosity, magnetic field strength, density, electrical conductivity, outer velocity, temperature and

thermal diffusivity respectively.
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The relevant restrictions on boundary are:

ou
At r=a,T=T,(x),u=u,x)+V,v— and v=20

or X (4)
Asr—>00,T—>Tmandu—>U=b(T)

Here, V, represents slip velocity.

Writing v and u in terms of (x, r) (stream function) as v = —%Z—f and u =2

r or
the continuity equation (1) is satisfied.

Introducing similarity variables
2

n="= —a = Ju, vxaf(n) and 6 = —= o (dimensionless temperature), the equation (2) and (3) are
transformed as
L+ 2yf) +2yf + ff —f7 =M~ D+ 22 =0 (5)
(1+2yn)6 +2y6 +Pr(f0 —nf 6)=0 (6)

The transformed conditions on the boundary are:
{9(0) =1 (0) =1 +Vf (0) f0)=0
0(0) = 0,f () =

I O T A S _ 953!
where y == (C),v_vo\ﬁ,Pr_a,A_c and M = =

parameter, Prandtl number, outer velocity parameter and magnetic parameter respectively.
The Nusselt number N,, and coefficient of skin friction Cy are described as

()

represents the curvature parameter, slip

_ 2xf" (0)
N, = —VRex6 (0) and C; =
where Re(= lc/v) represents the Reynolds number.
142 926 5 a0 L p a0 of a0
11l.  STABILITY ANALYSIS A+2mgatrg+ ’”(f_‘"an )5
=0 (11)
Unsteady case is considered for analyzing the flow and corresponding boundary restrictions become
stability and equations (2) and (3) are rewritten as: 0(0,7) = 1, £(0.7) = 0, g(o 9
du du du Zf
a o =14V5 700,
_U(')U vf)( au) oB?
ax " ror\ or p (@ of
-U) 8  O(o1)= 0,5~ (e, T)
or, o oT aa< aT) . . (12)
at ”ax ar ror\ or ©)

We consider, f(n) = fo(n) and 0(n) = 6,(n) as a

For solving the above system of equations, we add
(= (Dt) along with 7,3 andfas a similarity
variable. By applying similarity variables, the
equations (8) and (9) are reduced to

1+ 2m)5 3f f S zf -2y

on
af 9*f
_M(%_A)-l_/1 67]61

=0 (10)

solution of equations (1)-(4), and follow the method of
Merkin (1985) by adopting

fm1)=fom+ e "F(n,v)and 6(n, 1) = 6,(n) +
e "G(n, 1) (13)

where s represents eigenvalue, and F(n, 1) and G(n, T)
are assumed to be insignificant in respect of f,(n) and
0y(n). Solutions of problem (10)-(12) gives an
unbounded eigenvalues as s; < s, < ... The negative
and positive smallest eigenvalue indicates an initial
growth and decay in the disturbance respectively and
thus the flow is unstable and stable accordingly.
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Substituting equation (13) in equations (10)-(12), we
3 2

aF aF " !
(A +2m T+ @+ 57+ F-@fy s+ M)

2G oG

a G , , oF
1+2 —+2y—+P — 4+ 0,F — G+ 06)— G——=0
1+ Vﬂ)anz‘*‘ y0n+ r[f00n+ 0 n(fo + oan)]+5 37

along with restrictions on the boundary are
2

|

aF( )= 0,6 0
— (o0 - (o) -
k on 't , G(0,7)

As mentioned in [16, 19], the stability of the solution is
analyzed and hence F(n) = Fy(n) and G(n) = Gy(n) in
equations (14)-(15) to check decay or growth of initial

(1+2ynFy + Qy +fo)Fs +fo Fo— (2fo —s+ M)Fy' =0

(14 2yn)Gy + 2yGy + PrilfyGy + 0gFy — n(fy G + 6Fy) + sG = 0

along with the restrictions on the boundary are

{FO 0 =0, Fy(0) =V,Gy(0) =0
Fy(0) = 0,Gp(0) =0

For flow stability solution Fy(n) and 6,(n), it should
be noted that for a fixed entry of V', Pr,y, M and s, we
determine the smallest s, suggested by Harris et al.
(2009), we solve the equations (17)-(19).

IV. RESULT AND DISCUSSION

The boundary value problem consisting of the
differential equations (5)-(6) along with boundary
restrictions (7) has been computed numerically, using
Runge-Kutta Fehlberg method with the shooting
technique. Based on the computed results, an analysis
of flow and heat transfer has been done for distinct

Table 1: Smallest eigenvalues s at different A when Pr

(F(O )=0 aF(o )—VaF(o ),G(0,7) =0
IT - Y 677 IT - anz JTJ IT -
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get
aF) 9°F 14
on onor a4
oG
(15)
(16)
solution of equation (13). For this, linearized

eigenvalue problem (17)-(18) has been solved:

(17)
(18)

(19)

fluid parameters. The results have been presented in
terms of figures and tables.

Figure 2 shows the dual nature of the solution exists in
flow transportation for A > 0 in presence of V. The
upper branch (depicted by solid line) represents a stable
velocity profile. On the other side, the lower branch
(depicted by dashed line) represents an unstable
velocity profile. Also, the velocity profile shows an
asymptotic behavior for both stable and unstable
solutions (Figure 2).

=1,y = 00,n = 05V =01landM = 0.01

A Upper Solution Lower Solution
-0.03 0.0063 -0.0067
0 0.2016 —0.0940
0.03 0.4160 —0.1745
0.04 0.4741 —-0.1979
0.05 0.5290 —-0.2177
0.06 0.5821 —0.2392
0.08 0.6803 —0.2745

Further, the limit of the unstable solution and critical
point for A has been found in the presence of slip
velocity parameter V' = 0.1. Figure 3 demonstrates
the variation in f (0) against the outer velocity
parameter A in presence of slip velocity. The critical
point (A, = —0.03211) and limit of the dual solution
is A.,< A< A, = 012651, when V = 0.1, are
clearly presented in Figure 3. Table 1 represents the
smallest eigenvalue s for stable and unstable solution

with distinct entries of outer velocity parameter A. The
result described in Table 1 explains that s has negative
outcomes for unstable solution and positive for stable
one. Also, the outcomes of s approaching zero when A
approaches to the critical point. Further, the analysis
has been done only for the stable solution for distinct
fluid parameters.
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The plots of velocity profile for various entries of y in
presence of slip parameter V = 0.2 are shown in
Figures 4, 5 and 6 for distinct entries of outer velocity
parameter A = 0,0.5 and 2 respectively. Figures 4-5
explain that, in existence of slip velocity, fluid velocity
reduces slightly with increasing y up to a certain
distance near the stretching surface and then a phase
transition occurs, thereafter the fluid velocity curves
show trend reversal with increase in y. This phase

Stable Branch
— — —Unstable Branch

—»
Figure 2: f'(n) for A = 0.1 whenV =
0.1,Pr =1,y=001,n=05and M =
0.01

Figure 4: f'(n) for distinct entries of y with V = 0.2, when A
Figure 5: f' () for distinct entries of y with V = 0.2, when A

Figures 7, 8 and 9 show the effects of y (in existence of
slip velocity) on the temperature profiles for A
0,0.5 and 2 respectively. In all situations, the decrease
in temperature gradient in noticed. Thus, tem- perature
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transition in fluid velocity occurs with increasing v,
near the stretching surface due to the presence of slip
velocity. On the other hand, for 2 > 1 (Figure 6), we
observed a completely opposite trend but still having a
phase transition. Therefore, in all situations of (1 =
0,0.5,2), a transformation of stage occurs in velocity
profiles which clearly demonstrates the role of slip
effect near the surface.

-0.24

Stable solufion

-0.85F — — — Unstable solutiopn

—pask  A=-003211

-0.87

£ b =10.1263]

085

-Dear

-08 1 1 |-

-0.05 IR H

Figure 3: Variation in f (0) for A = 0.1
whenV = 0.1,Pr =1,y =0.01,n=0.5
and M = 0.01

0.8
0.85

nap

0.
0.5

rises with increasing y. Further, we noticed that the
transition point appears in all the three cases, just as in
the velocity profiles (Figures 4-6).
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05 1 15 2 25
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Figure 6: f' (1) for distinct entries of y with
V =0.2,whend = 2
Table 2: Computed results of £ (0) and —8'(0) for distinct y and V for Pr = 7,n = Oand M =0

Figure 7: 6(n) for distinct entries of y with
V =0.2,whenid =0

V=0 V=02
A 14 £(0) —0'(0) A 14
0 0 ~1.00001 1.89534 0 0
0 0.5 ~1.18459 2 05619 0 0.5
0 1 ~1.36386 2.21193 0 1
0.5 0 ~0.66726 1.98146 0.5 0
05 05 ~0.77611 2 16816 0.5 0.5
0.5 1 —0.87584 2.35102 0.5 1
2 0 2.01749 2.38607 2 0
2 0.5 2.26076 2.61919 2 0.5
2 1 2.48567 2.84067 2 1

Table 2: gives the computed outcomes of —8' (0)(«
N,) and f"(0)(ex C f) for distinct entries of y and 4,

having

we noticed that with increasing V', Cr increases and N,
decreases when A < 1. Thus friction increases which
resulting a decline in velocity when 4 < 1.

slip (V. =0.2) and no-slip (V = 0)

condition. The f "'(0) values are negative for A < 1,
as it exerts a drag on the surface. Also, from Table 2,

[= =]

Figure 8: 6(n) for distinct entries of y with V=0.2,

Figure 9: 6(n) for distinct entries of y with V=0.2,
when A =2

when A= 0.5
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The fluid velocity (Figures 4 and 5) increases for
A < 1 (after the transition point) because the value of
the skin friction reduces with increasing y whereas for
A = 2, we found a rever- sal trend (Figure 6) due to
the opposite variations observed in the f"(0). In
addition, we see from Table 2 that N, raises with
increasing y entries for each 4.

Figures 10, 11 and 12 give the plots of velocity profile
for A = 0,4 =05 and A = 2 respectively for

Figure 10: f (i) for distinct entries of M with V = 0.2,
when1 = 0

_IIII_J"__G
-——M=1

=]

D 0.5 1 15 2 25 3

—
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distinct entries of magnetic parameter M, with slip
condition at the surface. The clear separation of curves
in each figure demonstrates the significant effect of
magnetic field on the fluid flow in existence of partial
slip condition. The existence of magnetic field causes a
retardation in the fluid velocity (shown by the arrow in
Figures 10 and 11) when 2 < 1, while the impact of
outer velocity dominates over magnetic impact when
A > 1, as seen from the opposite trend of velocity for
A > 1 (Figure 12).

a B

0 1

2 3 4 5
—
Figure 11: £ (n) for distinct entries of M with V = 0.2,
when1 = 0.5
' ' M=o
———M=1
....... M=z
BEEEEE

Figure 12: f (i) for distinct entries of M with V = 0.2, when 1 = 2
Figure 13: 6(n) for distinct entries of M with V = 0.2, when 4 =0

Table 3: Computed results of —6’(0) and £~ (0) for distinct entries of M wheny = 0.5,Pr = 7,n = 0.5andV = 0.2.

A M
0 0
0 1
0 2
0.5 0
0.5 1
0.5 2
2 0
2 1
2 2

—6'(0) £ (0)

247176 -0.89621
2.26424 -1.17917
2.11381 -1.36415
2.68989 -0.57964
2.64240 -0.67535
2.60717 -0.74758
3.60278 1.59258
3.63188 1.69564
3.65583 1.78417
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Table 3 gives computed values of - 8'(0) and f " (0) for distinct entries of M.

We notice that as we increase the outer velocity
parameter A, the variation of magnetic field has a lesser
effect on skin friction coefficient. The magnetic field
opposes the transport phenomenon because when we
increase magnetism, the Lorentz force increases and it
offers large interruptions to the transport phenomenon
and indirectly leads to rise in the temperature

(displayed in Figure 13), as we rise the magnetic

Figure 14: f'(n) for distinct V when 1 =0

0 0.5 1 1.5 2 25

[

1
—V¥=0
- —-V=01
T V=02
0.8
0.4
8
0.2
0 s s
0 05 1 15

—3
Figure 18: 6(n) for distinct V when 4 = 0.5

Figures 14, 15 and 16 depicted curves of velocity for
different entries of V for distinct 1. We observe that as
V increases, there is a reduction (shown by the arrow)
in velocity (Figure 14 and 15) for 2 < 1, while a
reverse trend is noticed for A > 1 (Figure 16). The

www.ijatca.com

intensity. Table 3 gives the computed values of Cr and
N, for distinct entries of M in absence and presence of
A. For all 4, as we increase M the magnitude of C;

increases whereas N, increases for 4 > 1 and
decreases for 4 < 1.

5 G

Figure 15: £ () for distinct V when 2 = 0.5

— V=g
-—-V¥=01
mEF Y e V=02
0.8
0.4 .
Qo
] S
n2f i,
“"'»..
Lo
I: 1 1 s L
0 05 1 15 2
—
Figure 17: 6(n) for distinct V when 2 =0
1
— V=0
- —-V=01
oeF N e V=02
0.8
04
8
032
0 s s s
0 0z 0.4 0.8 0.3 2
—

Figure 19: 6(n) for distinct V when 4 = 2

magnitude of velocity gradient decreases as we move
away from the surface and ultimately vanishes.

Figures 17, 18 and 19 represent the temperature curves
for different entries of V with different A. The rise in
temperature is noticed with increasing V when 4 < 1
(Figures 17 and 18), while decline in temperature is
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noticed for A > 1 (Figure 19). A quick comparison of
the velocity curves (Figures 14-16) and the temperature
curves (Figures 17-19) showing impact of partial slip
indicates that the velocity curves with greater
separation are affected more by the partial slip.

V. CONCLUSION

In this paper, we have formulated and solved
numerically the heat and flow transportation problem
of an MHD outer velocity flow over a progressively
stretching cylinder in horizontal direction with partial
slip. The key findings are:

1. Results clearly show the existence of dual nature
of the solution. Stable and unstable solution is given by
upper and lower branch.

2. The limit of the unstable solution is given as
—0.03211 <A1 < 0.12651forV = 0.1.

3. Slip effect shows a transition point in velocity
profiles when we increase the curvature parameter
values.

4. Smallest eigenvalue for stable solution is positive
and for unstable solution is negative for different outer
velocity parameter A.
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