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Abstract: The aim of the present communication is to investigate the chemical reaction and viscous dissipation 

effects on the nonlinear convective flow of a Casson fluid through the vertical channel. In addition, the nonlinear 

temperature-concentration-dependent density relation (i.e. nonlinear convection or nonlinear Boussinesq 

approximation) takes into account. Adomian decomposition method (ADM) was applied to find the solutions to the 

problem and the numerical results validated by the novel successive linearization method. The emerging physical 

parameters on the flow characteristics are discussed through tabular form and graphical representations.  
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I. INTRODUCTION 
 

Various scientific models have been proposed in the 

past couple of decades to acquire an intensive 

perception of the mechanics of non-Newtonian fluids. 

Since non-Newtonian fluids have significant 

applications in food preservation techniques, power 

engineering, petroleum production, and chemical 

process industries. Casson fluid is one and it can be 

selected to fit the rheological behavior of tomato sauce, 

soup, honey, and jelly. Casson fluid model can also is 

the most compatible formulation to simulate blood type 

fluid flow and it exhibits yield stress in the constitutive 

equation (Casson, 1959). Very important contributions 

to the flow problems characterizing Casson fluid can be 

found in the works of Attia and Sayed-Ahmed (2010), 

Shehzad et al. (2013). The combined effect of viscous 

dissipation and first-order chemical reaction on the 

convective heat and mass transport in non-Newtonian 

fluid flow over different geometries has been a great 

concept interest for many investigators (Shateyi et al., 

2010; Barik and Dash, 2014; Ahmed et al., 2017), Very 

recently Gireesha et al. (2019) studied the effect of 

cross-diffusion and viscous dissipation on the mixed 

convective flow of Casson fluid over a vertical plate.     

In some investigations related to the heat and mass 

transfer, it is essential to consider nonlinear density 

temperature (NDT) and nonlinear density concentration 

(NDC) variations in the buoyancy term. Heat released 

by the viscous dissipation triggers some changes in 

density gradients.  

Vajravelu and Sastri (1977) reported that the NDT 

variation in flow between two parallel walls affects the 

flow and heat transfer rates to a large extent. Casson 

fluid flow past a heated horizontal wall in the presence 

of NDT variation and viscous dissipation has been 

studied by Shaw et al. (2016). Recent advances in this 

direction in non-Newtonian fluid flow can be seen in 

the studies of Hayat et al. (2018) and Srinivasacharya et 

al. (2018) . The present study aims to provide a 

discussion of the combined viscous dissipation and 

chemical reaction on the nonlinear convective flow of a 

Casson fluid along a vertical channel. In spite of the 

complex structure of the problem and to provide more 

accurate results, the final nonlinear system of equations 

is solved using the Adomian Decomposition Method 

(ADM). ADM is a generally new methodology, which 

gives an analytic approximation to linear and nonlinear 

problems. It requires neither linearization nor 

perturbation and furthermore, it gives the solution as an 

infinite series in which each term can be determined. 

Interesting features of the present setup has been given 

at the end of the study. 
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II. MATHEMATICAL ANALYSIS 
 

Consider the fully developed Casson fluid flow through 

a vertical channel. Under the standard boundary layer 

assumptions and with nonlinear Boussinesq 

approximation (Hayat et al., 2014; Shaw et al., 2016; 

Ajayi et al., 2017 and RamReddy et al. 2018), the 

governing equations are  
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The associated conditions are given by 

1 1 2 2At : 0, , ; and at :  0, ,y d u T T C C y d u T T C C                  
             (5)   

In the above equations,  the dimensional parameters are 

given by density as  , specific heat as pC
, 

coefficients of thermal expansion of first and second 

orders as 1 and 2 , coefficients of solutal expansion of 

first and second orders as 3 and 4 , respectively, 

thermal diffusivity as  , mass diffusivity as D , 

acceleration due to gravity as g , first-order chemical 

reaction parameter as 1K
, pressure gradient as

p
, 

Casson fluid parameter as 


, coefficient of viscosity 

as 


, velocity components along the x  and 
y

directions as u  and v , respectively, 

 

Introducing the new variables in the dimensionless form  

0 0 0

0 2 0 2 0

2

0

,  ,,    ,, 
v d T T C Cy u d

Y F T C
d u T T C C

dp
R A

u dx

 
   

 
  

   
  



 
                             (6)  

 

Substitute Eq. (6) in Eqs. (1)-(5), the dimensionless governing equations are
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The transformed boundary conditions in dimensionless form 

0,    ,     at    1 and   =0,  1 ,  1   at    1t sF T R C R Y F T C Y       
                         (10) 

The dimensionless parameters like Reynolds number (

Re ), suction/injection parameter ( R ), Prandtl number 

( Pr ), Schmidt number ( Sc ), Grashof number ( Gr ), 

non-dimensional chemical reaction parameter ( ), 

Brinkman number ( Br ), constant pressure gradient ( A

), Buoyancy ratio ( CN
), nonlinear-density-temperature 

parameter (NDT) ( 1
), Eckert number ( Ec ), 

nonlinear-density-concentration parameter (NDC) ( 2

), slip temperature parameter ( tR
) and slip 

concentration parameter ( sR
) are defined in the 

following equation 
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The physical quantities of present interest (i.e. heat and mass transfer rates on the left side and right side walls) in 

dimensionless form are represented as 
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III.ANALYTICAL PROCEDURE VIA 

ADM 
 

3.1 Fundamentals of ADM 

In view of the basic methodology involved, we 

consider a general non-linear differential equation:  

     ( )G u t r t
                           (13) 

where 
( )u t

 is the unknown function, 
 r t

 is the 

source term and  G  represents a general nonlinear 

ordinary or partial differential operator including both 

linear and nonlinear terms.  

Let us rewrite the equation (13) into the standard 

operator from as follows:  

  Lu u u r                                 (14) 

where  L is usually the highest order derivative (which 

easily invertible),    is the remainder of the linear 

operator and u indicates the nonlinear terms. 

Applying the inverse operator 
1  L (which is a twofold 

indefinite integral) on both sides of (14) and by using 

the associated boundary conditions. One can obtain the 

unknown function 
( )u t

 as 
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            (15)       

Here 
Q

 represents the sum of the twofold integral 

result of 
 r t

and terms from the auxiliary conditions.   

The standard ADM defines the solution u and 

nonlinear  u term by the infinite series as 
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where kA
 are the special Adomian polynomials which 

are obtained recursively from the following relation. 
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Therefore, the solution of Eq. (13) is given by 
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By expanding the series (18) and comparing the 

coefficients of 0 1 2, , , ...u u u
. We get the following 

recurrence relations 
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Using (17), (18) and (19), we can compute all the 

components ku
 and hence 0

k

k





u u
. 

3.2 A solution of the Fluid Equations  

The present section is devoted to solving fluid 

equations (7) to (9) by following the above said steps 

of Adomian decomposition Method (Aski et al., 2014). 

According to Eq. (14), Eqs. (7) to (9) can be written as
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Where, L is the second order operator and its inverse 

operator is defined as 

1
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By applying the inverse differential operator on both 

sides of the set of Eqs. (20) leads to
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Next, we decompose the required solution as an infinite sum given below 
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and the nonlinear terms are decomposed into a series of Adomian polynomials as 
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Using Eq. (22) and Eq. (23) into Eq. (21), we obtain 
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Further, 
( )mF Y

,  
( )mT Y

and  
( )mS Y

 for 2m   be determined in similar way from. Finally, the approximate 

solution can be achieved with following series expansions.  
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IV. RESULTS AND DISCUSSIONS 

The results obtained by Adomian Decomposition 

Method were well matched with the results carried out 

by a novel successive linearization method (Motsa et 

al., 2011), as shown in Table 1. This numerical 

comparison reveals that the error in results is at an 

acceptable level.  The effects of Casson fluid parameter 

(


), NDT parameter ( 1 ), NDC parameter ( 2 ), 

chemical reaction parameter ( ) and Brinkman 

Number ( Br ), and slip constants ( Rt and Rc ) on the 

fluid profiles are exhibited through Figs 1 to 4. For this 

the numerical computations are carried out by taking

2.0R  , 10Gr  , Re 2.0 ,
0.5cN 

, 1.0A , 

Pr 0.72 , 0.22Sc  , 0.1Rt  and 0.1Rs  . 

 

 

 

Table 1: Comparison of 1Nu
, 2Nu

, 1Sh
 and 2Sh

 between ADM and SLM 

Pr  

ADM SLM 

Sc  

ADM SLM 

1Nu
 2Nu

 1Nu
 2Nu

 1Sh
 2Sh

 1Sh
 2Sh

 

0.72 1.9722 0.2992 1.9723 0.2991 0.22 1.3055 0.6032 1.3056 0.6033 

2.97 7.9549 0.0042 7.9550 0.0042 0.6 2.1346 0.2716 2.1347 0.2717 

4.24 11.3969 0.0017 11.3970 0.0017 0.96 3.0263 0.1080 3.0266 0.1080 

7 18.8582 0.0009 18.8583 0.0009 2 5.8414 -0.0205 5.8415 -0.0205 

 

 

Figure 1(a) depicts the influence of 1  and 2  

parameters on the Casson fluid velocity and it reveals 

that fluid velocity increases with by enhancing these 

two parameters from zero to some positive value. Also, 

observed that the fluid velocity more in the presence of 

these parameters as compared to its absence results.  

Physically, 1 0 
and 2 0 

 implies that 1 0T T 
and 

1 0CC  
; hence, there will be a supply of heat and 

mass to the flow region from the wall. Due to this 

exchange, there is an increase in velocity with the 

presence of 1  and 2 . Influence of Casson parameter 

(


) on the velocity of the fluid is projected in Fig. 1(b) 

for both linear and nonlinear convection cases. It is 

worth to mention that an increase in 


 reduces the 

yield stress which offers very less resistance to the fluid 

motion. This effectively facilitates the flow of the fluid 

in the middle of the channel, as shown in Fig. 1(b). 
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(b) 

Figure 1: Variation of velocity (a) with 1  and 2 , (b) 

with 


. 

Effect of chemical reaction parameter  on the velocity 

and concentration is projected in the Figs. 2(a) and 

2(b), respectively. Since a rise in  will control species 

concentration and it leads to reduce the chemical 

molecular diffusivity, i.e., less diffusion.  This 

destructive reaction reduces the velocity and 

concentration of the Casson fluid with the increase of 

 , shown in above said projections.  

 

 

 
(a) 

 
(b) 

Figure 2: Variation of (a) velocity, and (b) concentration 

with . 
 

Variation of velocity and temperature with Brinkman 

number ( Br ) is identified in the Figs. 3(a) and 3(b), 

respectively. The rise in Br , slow down the conduction 

of heat which is generated by viscous dissipation and 

this reduction favor the velocity and temperature of the 

fluid, as shown in Figs. 3(a) and 3(b).  In the last set of 

Figs. 4(a) and 4(b), the influence of slip parameters is 

considered on the respective distributions (i.e., 

temperature with Rt and in other concentration with 

Rs ). Increase in the respective slip parameters there is 

a huge in both temperature and concentration as 

depicted in Figs. 4(a) and 4(b). 
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Figure 3: Variation of (a) velocity, and (b) temperature with

Br . 
The variation of Nusselt number and Sherwood number 

(where Nusselt number represents the heat transfer rate 

and Sherwood number represents the mass transfer 

rates) with effects of Casson fluid parameter (


), 

chemical reaction parameter ( ) and the Brinkman 

Number ( Br ) at both the left and right side walls are 

exhibited in Table 2. A rise in


 leads to decrease the 

Nusselt number at the left side wall while it intensifies 
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at the right side wall. There is no effect of  on the 

Sherwood number on both the left side as well as right 

side walls with


. Taking the constant values of

1.0, 2.0Br  
, both the Nusselt number and 

Sherwood numbers are a decline on the right side wall 

while they increase on the left side wall, with an 

increase in . Also with an increase of Br , the heat 

transfer rate magnify on the left side wall while it 

shows the reverse trend on the right side wall, but 

Sherwood number do not have influence with Br  on 

both the walls. 

 

 
(a) 

 

 
(b) 

Figure 4: (a) Variation of temperature with Rt and (b) 

Variation of concentration with Rs. 

 

Finally, the above all figures are depicted to identify 

the impact of pertinent parameters on the flow of 

Casson fluid along a vertical channel in both linear and 

nonlinear convections. Also, Nusselt number and 

Sherwood numbers are measured in the absence and 

presence of nonlinear convection parameters, as given 

in Table 2. From the above investigations, it is noticed 

that the influence of the pertinent parameters is 

enhanced by the presence of nonlinear convection 

parameters. Due to the presence of nonlinear gradients 

in the buoyancy term, the impact of pertinent 

parameters is improved and it shows a larger influence 

on the behavior fluid characteristics compared with 

linear convection results. 

 

Table 2: Effect of


,  , Br on the Nusselt and Sherwood numbers at both left and right sides of walls for 

both linear and nonlinear convection cases. 

 
Linear convection ( 1 2 0  

) Nonlinear convection ( 1 2 1   
) 

1Nu
 2Nu

 1Sh
 2Sh

 1Nu
 2Nu

 1Sh
 2Sh

 
 


 

0.1 2.1948 0.2541 1.3055 0.6032 2.1889 0.2555 1.3055 0.6032 

0.2 2.1884 0.2556 1.3055 0.6032 2.1683 0.2600 1.3055 0.6032 

0.3 2.1799 0.2575 1.3055 0.6032 2.1409 0.2655 1.3055 0.6032 

 

  

1 2.1604 0.2612 1.3055 0.6032 2.0769 0.2770 1.3055 0.6032 

2 2.1611 0.2610 1.3795 0.5725 2.0797 0.2762 1.3795 0.5725 

3 2.1618 0.2608 1.4513 0.5430 2.0823 0.2755 1.4513 0.5430 

 

Br  

1 2.1604 0.2612 1.3055 0.6032 2.0769 0.2770 1.3055 0.6032 

2 2.1227 0.2693 1.3055 0.6032 1.9491 0.3023 1.3055 0.6032 

3 2.0843 0.2775 1.3055 0.6032 1.8130 0.3298 1.3055 0.6032 

 

V. CONCLUSION 

Major findings of the present study are summarized 

below: 

 Velocity and Nusselt numbers enhanced at the right 

side wall while the Nusselt number at the left side wall 

decreases, as Casson fluid parameter increases.  

 Heat and mass transfer rates at the left and right side 

of the walls increase with an increase of both nonlinear 

convection parameters.  

 Both the F and T of the Casson fluid increased with 

the Br and Rt .  

 Velocity and concentration profiles are increasing 

functions of  and Rs . 
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