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Abstract: This manuscript discussed the influence of inclined outer velocity on heat and flow transference in 

boundary layer Casson fluid over stretching sheet. The flow is adopted to have magnetic field in the uniform 

manner on stretching surface. It has been taken that in both directions along the horizontal axis, the sheet is 

stretched. Using similarity transformations, the generating equations representing the heat and flow 

transportation are converted to ordinary differential equations. The flow is influenced by magnetic parameter, 

Casson fluid parameter, Prandtl number and the impinging angle parameter. The numerical solutions of the 

transformed equations have been computed by the Runge-Kutta Fehlberg method using shooting procedure. 

Behavior of emerging parameters is depicted graphically. Acceptance of the extant technique used in current study 

is correlated with the existing outcomes.  
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I. INTRODUCTION 
 

Numerous practical applications of heat and flow 

transportation in several divisions of manufacturing 

procedure lead attention of many researchers in this 

field of stretching surface. Crane(1970) initiated the 

work on stretching surface by analyzing the heat and 

flow characteristics over stretching sheet. Many 

researchers (Andersson, 1992; Cortell, 2005; Poply et 

al., 2013) further extended this study by analyzing the 

impact on flow characteristics in various situations and 

different surfaces, where theoretical results are 

covenant with experimental results and they are well 

documented in the literature. But, in some real-world 

application such as extrusion of sheet, fluid has some 

prescribed velocity. Many researchers analyzed the 

effect of the outer velocity and stagnation-point flow 

over stretching surfaces (Hayat et al., 2014; Hayat et 

al., 2014; Ishak et al., 2009; Poply et al., 2015, 2017; 

Siddheshwar & Meenakshi, 2016; Singh et al., 2010;  

2010;  2011). 

Many biological as well as industrial driven fluids 

such as multi-tude oils, lubricating greases, gypsum 

pastes, cleansing agents, blood, ceramics, paints etc., 

flow behavior does not pertained to the theory of 

Newtonian fluid and its extensions. Therefore, 

numerous works have been done for non-Newtonian 

fluids, such as viscoelastic fluid (Labropulu, & Pop, 

2011; Abel et al., 2008) and power-law fluid by Abel et 

al. (2009). 

The Casson fluid models containing several food 

stuffs and biological materials, especially blood. 

Mustafa et al. (2012) analyzed the behavior of heat and 

flow transportation of Casson fluid about a stagnation 

point using Homotopy analysis method (HAM). 

Duality and exactness of the solution in Casson fluid 

has been observed in Kameswaran et al.(2014) and 

Bhattacharyya et al. (2014) respectively. They stated 

that the dual solution exist in shrinking sheet as well as 

in stretching sheet. In Casson fluid, Sheikh and Abbas 

(2015) discussed the influence of homogenous and 

heterogeneous reactions emerged from uniform suction 

and slip from the surface. Effect of slip velocity on 

unsteady stretching sheet due to Casson fluid with 

variable heat flux has been examined by Megahed 

(2015). 

The above literature survey reveals that no study had 

discussed so far the impact of magnetic field on oblique 
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stagnation point with outer velocity over a stretching 

surface in Casson fluid flow. The purpose of current 

analysis over stretching sheet is to examine the 

combined influence of inclined outer velocity and 

Casson fluid over heat and flow transportation in MHD 

flows. 

II. MATHEMATICAL 

FORMULATION 
 

 

Steady 2D Casson fluid flow of a non-compressible, 

viscous, electrical conducting fluid with outer flow is 

considered (shown in Figure 1). 𝑢𝑤 (𝑥) and 𝑇𝑤 (𝑥) are 

the linear velocity and uniform temperature on 

stretching surface respectively. The generating 

equations of flow under the above assumptions are 

described as: 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of problem 
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where, velocity along 𝑦 (vertical axis) and 𝑥 (horizontal 

axis) - axes are taken as 𝑣 and 𝑢 respectively. 

𝑃, 𝜎, 𝜈, 𝐶𝑃 , 𝑇, 𝑄, 𝐾 and 𝐵0 denotes the pressure, 

kinematic viscosity, electrical conductivity, specific 

heat (at constant pressure), fluid temperature, thermal 

conductivity and magnetic field strength of the fluid 

respectively. 

Restrictions on the boundary are describing the flow 

model as: 

 

 

At         y = 0      u = uw x = bx ,
 v = 0,   T = Tw

As       y → ∞    u = nx sinγ + my cosγ ,   
v = −ny sinγ, T = T∞

        (5) 

where, 𝑏, 𝑛 and 𝑚 are non-negative invariable values of 

dimension (time
-1

). The fluid having unvarying 

temperature 𝑇∞  very far from the surface and 𝛾 is 

impinging angle from the 𝑥 -axis, at which Casson 

fluid striking the stretching sheet (striking angle 

parameter). After removing (𝑃) from equations (2) and 

(3), we obtained 
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Introducing  ξ =  
b

ν
x, η =  

b

ν
y  (stream function) as 

dimensionless variables such that   u =
∂ѱ

∂η
 and v =
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−
∂ѱ

∂ ξ
. The Boundary condition in term of stream function ѱ(ξ, η) is given by, 

 
ѱ = 0,

∂ѱ

∂η
= ξ                              on η = 0

ѱ = λξηsinγ +
1

2
  Rη2cosγ   as η → ∞  

 

 
                                (7) 

where  λ =
n

b
  is outer velocity parameter and  R =

m

b
 is 

some positive constant. 

We need solution of equation (6) from relation ѱ =
ξf0 η + g0(η), where  g0 η  and  f0 η  are referred as 

tangential and normal part of the flow. Also,   v ξ, η =
−f0(η) and u ξ, η = ξf0

′ η + g0
′ η  . 

Equation (1) is contented by given 𝑣 and 𝑢 and 

equation (6) transformed to, 

 

f0
′ η  ξf0
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Here M =
σB0

2

cρ
 is the Chandershekhar number (magnetic 

parameter). Also, comparing the coefficient of ξ and ξ0, 

we get 
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After integrating, equation (9) and (10) become 
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Where, C and D are constant of integration and 

determined by boundary condition, 

 

 f0 0 = 0,   f0
′ 0 = 1,   f0

′ ∞ = λ sinγ

g0 0 = 0,   g0
′ 0 = 0,       g0

′′  ∞ =  R cosγ    
                                                                             (13) 

Incorporating value of 𝐶 and D in equations (11) and (12) respectively, we get 
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Further, we find that the linearity of equation (15) can 

take the solution of the form  

    g0′  η = 𝑘 cos γ h0 η                                       (16) 

where, h0 η  is define from the equation 

 1 +
1

β
 h0

′′  η + f0 η h0′ η − f0
′ η h0 η 

−  M(h0 η − η) − α
= 0                                                                           (17) 

    h0 0 = 0, h0
′  ∞ = 1                                    (18) 

 

By considering the normal component of the flow field, 

the dimensionless temperature 

θ η = (T − T∞)  Tw − T∞ .   Substituting θ η  in 

equation (4), we get, 

   θ′′  η + Prθ′ η f0(η) + Prθ η = 0           (19) 

 

where, Pr (= μCP K ) is Prandtl number. 

Corresponding boundary conditions to (5) reduces to,   

   θ 0 = 1, θ ∞ = 0                                       20  

 

III. RESULTS AND DISCUSSION 
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Runge-Kutta Fehlberg has been used to solve 

numerically the equations (14), (17) and (19) with their 

corresponding boundary conditions through shooting 

technique. Table 1 demonstrates the numerical 

algorithm applied for the current problem is in 

favorable justification with published work and thus 

validating the model and numerical algorithm. Velocity 

and dimensionless temperature of the model have been 

acquired for distinct entries of outer velocity parameter 

𝜆, Casson fluid parameter 𝛽, striking angle parameter 

𝛾, magnetic parameter (Chandershekhar number) M. In 

order to get insights of the fluid behavior, the graphs 

have been inserted to evaluate the influence of 

numerous fluid parameters on heat and flow 

transportation. The value of horizontal axis −η is 

chosen so that velocity profiles and temperature 

profiles asymptotic tends to the boundary condition. 

All the simulations are carried with 𝜂max = 10.  

However, to depict the characterization of curve 

effectively, much lower values of η are used. 

 

Table 1: 𝑓0
′′ (0) for distinct entries of 𝜆 at large 𝛽, a comparison. 

 

Value of 𝝀 Value of 𝒇𝟎
′′

(0) 

Present paper Singh et.al (P. 

Singh et al., 

2010) 

Lok et.al. (Lok, 

Amin, & Pop, 

2006) 

0.1 −0.969386 −0.976371 −0.969388 

0.2 −0.918107 −0.921594 −0.918110 

0.5 −0.667263 −0.667686 −0.667271 

2 2.017502 2.0174763 2.017615 

 

The impact of 𝛽 on profiles of velocity for outer 

velocity parameter𝜆 =  0.5 𝑎𝑛𝑑 𝜆 =  1.5 as displayed 

by the Figures 2 and 3 respectively. Physically, 𝜆 <  1 

explained by the case when stretching sheet velocity 

exceeds the outer velocity. Figure 2 show that a 

reduction in fluid velocity has been observed with the 

rise in 𝛽 for 𝜆  =   0.5 . This behavior is explained by 

the fact that, increasing the non-Newtonian Casson 

fluid parameter 𝛽 yields increment in the fluid stress 

causing a resistance force which declines the fluid 

velocity. For large value of 𝛽, decrease in boundary 

layer thickness is noticed for 𝜆 = 0.5 (Figure 2). In 

Figure 3, velocity profile curves increases along with 

the increase in 𝛽 for 𝜆 >  1.  An inverted boundary 

layer is formed in velocity profile in Figure 3 for 

𝜆 >  1.  An opposite trends of velocity profile has been 

observed for 𝜆 =  1.5 in Figure 3 in comparison with 

𝜆 =  0.5 (shown by Figure 2). 

 

.    
Figure 2: 𝑓0

′ 𝜂  for distinct 𝛽, when 𝑀  =

 0.5, 𝑅 =  1, 𝑃 𝑟  =  0.71, 𝛾 =  
𝜋

3
, 𝜆 =  0.5 

Figure 3: 𝑓0
′ 𝜂 for distinct 𝛽, when 𝑀  =

 0.5, 𝑅 =  1, 𝑃 𝑟  =  0.71, 𝛾 =  
𝜋

3
, 𝜆 =  1.5 
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Figure 4: 𝜃 𝜂  for distinct 𝛽, when 𝑀  =  0.5, 𝑅 =

 1, 𝑃 𝑟  =  0.71, 𝛾 =  
𝜋

3
, 𝜆 =  0.5 

Figure 5: 𝜃 𝜂  for distinct 𝛽, when 𝑀  =  0.5, 𝑅 =

 1, 𝑃 𝑟  =  0.71, 𝛾 =  
𝜋

3
, 𝜆 =  1.5 

 

   
Figure 6: 𝑓0

′ 𝜂  for distinct 𝑀, when 𝛽  =  0.5, 𝑅 =

 1, 𝑃 𝑟  =  0.71, 𝛾 =  
𝜋

3
, 𝜆 =  0.5 

Figure 7: 𝑓0
′ 𝜂  for distinct 𝑀, when 𝛽  =  0.5, 𝑅 =

 1, 𝑃 𝑟  =  0.71, 𝛾 =  
𝜋

3
, 𝜆 =  1.5 

 

Figure 4-5 shows the profiles of temperature curves 

when Casson fluid parameter 𝛽 = 0.1,0.5 & 1 in 

presence of 𝜆 < 1 𝑎𝑛𝑑 𝜆 >  1 respectively. For a 

fixed 𝛽  in Figure 4, firstly the temperature curve 

increases and it shows a decline in curve after some 

distance𝜂. This change in the behavior of temperature 

curve is due to the presence of 𝛽.  Also, Figure 4 

reveals that increase in temperature has been observed 

with the increase in 𝛽 for 𝜆 <  1. As explained in 

above paragraph that as Casson fluid parameter 

increases, fluid velocity decrease which results in low 

heat transfer rate and hence temperature increase for 

𝜆 =  0.5. opposite trend in velocity profiles for 𝜆 <
 1 is the reason for decrease in temperature profiles in 

the case for 𝜆 >  1 (shown in Figure 5). However, the 

thermal boundary thickness is thinner for 𝜆 >  1 as 

compared to that of  𝜆 < 1.  

Graphs of Velocity for distinct entries of 𝑀  for 

𝜆 =  0.5 and 𝜆 =  1.5 are depicted by the Figures 6 

and 7 respectively.  Figure 6 shows that a reduction in 

velocity is noticed with increasing 𝑀.  Physically this 

behavior has been explained as, the magnetic field can 

induce current on conducting fluid and the trans- verse 

magnetic field behaves like a Lorentz force, which 

produce retardation on fluid boundary layer and the 

fluid velocity slow down due to the retardation.  

Consequently, momentum thickness reduces.  Hence, 

fluid magnetism is used to control the desired 

formation of final object.  Figure 7 demonstrates that as 

𝑀 increases, velocity increases for 𝜆 =  1.5. 

Figures 8 and 9 display the profiles of temperature with 

variation in the entries of Chandershekhar number 𝑀 

for 𝜆  =   0.5  and 𝜆  =   1.5 respectively. Figure 8 

show that temperature increases as 𝑀 increases 

for 𝜆  =   0.5. For 𝜆  =   1.5  in Figure 9, a decline in 

temperature profile is noticed for rise in M.  Other than 

this, in Figure 9 (for 𝜆 =  1.5) the dispersion in the 

temperature profile curve for distinct magnitude of 𝑀 is 

less as compared to Figure 8 (for 𝜆 =  0.5).  The 

separation in temperature profile curves less because of 

the presence of greater outer velocity parameter 𝜆. 
Hence, outer velocity parameter 𝜆 reduces the impact 

of 𝑀. Thus, to control the magnetic field in the flow, 

we use higher value of outer velocity parameter 𝜆. 

 



Renu Devi, International Journal of Advanced Trends in Computer Applications (IJATCA) 

Special Issue 1 (1), July - 2019,  pp. 32-38 

ISSN: 2395-3519  

 

www.ijatca.com                                                                                        37 

0 

 
Figure 8: 𝜃 𝜂  for distinct 𝑀, when 𝛽  =  0.5, 𝑅 =

 1, 𝑃 𝑟  =  0.71, 𝛾 =  
𝜋

3
, 𝜆 =  0.5 

 
Figure 9: 𝜃 𝜂  for distinct 𝑀, when 𝛽  =  0.5, 𝑅 =

 1, 𝑃 𝑟  =  0.71, 𝛾 =  
𝜋

3
, 𝜆 =  1.5 

The influence of striking angle parameter γ on 

dimensionless velocity 𝑓0
′ 𝜂  for 𝜆  =   0.5  and 

 𝜆  =   1.5  are displayed by Figures 10 and 11 

respectively. Here, velocity profile increases with 

increasing the striking angle parameter 𝛾.  On the other 

hand, in Figure 11 for 𝜆 >  1, it has been observed that 

as we increase the striking angle parameter 𝛾, the 

velocity profile is inverted.  

Figures 12 and 13 show the influence of striking angle 

parameter γ on temperature profile for two situations of  

𝜆.  In both situations, dimensionless temperature profile 

reduced for large value of striking angle parameter  𝛾.  

Also, it has been noticed that in existence of greater 

outer velocity parameter 𝜆 (Figure 13), the effect of 

striking angle parameter  𝛾 is less with comparison of 

less outer velocity parameter  𝜆  (Figure 12). This effect 

of outer velocity parameter 𝜆  is observed by the 

separation of temperature profile curves in Figures 12 

and 13.  

 

 

 

 

   
Figure 10: 𝑓0

′ 𝜂  for distinct 𝛾, when 𝑀 =
0.1, 𝛽 = 0.5, 𝑅 = 1, 𝑃𝑟 = 0.71, 𝜆 =  0.5 

Figure 11: 𝑓0
′ 𝜂  for distinct 𝛾, when 𝑀 =

0.1, 𝛽 = 0.5, 𝑅 = 1, 𝑃𝑟 = 0.71, 𝜆 =  1.5 

   
Figure 12: 𝜃 𝜂  for distinct 𝛾, when 𝑀 =
0.1, 𝛽 = 0.5, 𝑅 = 1, 𝑃𝑟 = 0.71, 𝜆 =  0.5 

Figure 13: 𝜃 𝜂  for distinct 𝛾, when 𝑀 =
0.1, 𝛽 = 0.5, 𝑅 = 1, 𝑃𝑟 = 0.71, 𝜆 =  1.5 

IV. CONCLUSION 
 

The effectiveness of magnetic field and outer velocity 

over a stretching sheet on temperature and velocity 

profiles in Casson fluid has been studied. Numerical 

solutions are different fluid parameters have been 

shown in terms of temperature and velocity profiles. 
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Major recommendations of the outcomes are compiled 

as below: 

1. For 𝜆 < 1:  

(a) Velocity decreases with an increase in 𝛽 and 𝑀,  

(b) Velocity increases with an increase in 𝛾,  

(c) Temperature increases as we increase in 𝛽 and 𝑀, 

(d) Reduced in temperature is noticed as 𝛾 increases. 

2. For  𝜆 > 1:  

(a) Velocity rises with an rise in 𝛽 , 𝛾 and 𝑀 

(b) Temperature reduce for increase in 𝛽, 𝛾 and 𝑀, 

(c) An inverted boundary layer is formed in velocity 

profile 

3. The combined study indicates that in the 

presence of larger outer velocity parameter, the 

effect of other fluid parameters less affected 

the fluid velocity and temperature. 

 

Conflict of Interests  
The author does not have any conflict of interest 

regarding the publication of paper.  

Acknowledgement  
The Author expresses his earnest thanks to the 

reviewers for improvement of the paper. 

 

References 
[1]. Abel, M. S., Sanjayanand, E., & Nandeppanavar, M. M. 

(2008). Viscoelastic MHD flow and heat transfer over a 

stretching sheet with viscous and ohmic dissipations. 

Communications in Nonlinear Science and Numerical 

Simulation, 13(9), 1808–1821. 

[2]. Abel, M. S., Datti, P. S., & Mahesha, N. (2009). Flow 

and heat transfer in a power-law fluid over a stretching sheet 

with variable thermal conductivity and non-uniform heat 

source. International Journal of Heat and Mass Transfer, 

52(11–12), 2902–2913. 

[3]. Andersson, H. I. (1992). MHD flow of a viscoelastic 

fluid past a stretching surface. Acta Mechanica, 95  (1- 4), 

227–230.  

[4]. Bhattacharyya, K., Hayat, T., & Alsaedi, A. (2014). 

Exact solution for boundary layer flow of Casson fluid over a 

permeable stretching/shrinking sheet. ZAMM - Journal of 

Applied Mathematics and Mechanics / Zeitschrift Für 

Angewandte Mathematik Und Mechanik, 94(6), 522–528. 

[5]. Cortell, R. (2005). A note on magnetohydrodynamic 

flow of a power-law fluid over a stretching sheet. Applied 

Mathematics and Computation, 168(1), 557–566. 

[6]. Crane, L. J. (1970). Flow past a stretching plate. 

Zeitschrift Für Angewandte Mathematik Und Physik ZAMP, 

21(4), 645–647. 

[7]. Hayat, T., Qasim, M., Shehzad, S. A., & Alsaedi, A. 

(2014). Unsteady stagnation point flow of second grade fluid 

with variable free stream. Alexandria Engineering Journal, 

53(2), 455–461.  

[8]. Husain, I., Labropulu, F., & Pop, I. (2011). Two-

dimensional oblique stagnation-point flow towards a 

stretching surface in a viscoelastic fluid. Open Physics, 9(1), 

176-182.  

[9]. Ishak, A., Jafar, K., Nazar, R., & Pop, I. (2009). MHD 

stagnation point flow towards a stretching sheet. Physica A: 

Statistical Mechanics and Its Applications, 388(17), 3377–

3383.  

[10]. Kameswaran, P. K., Shaw, S., & Sibanda, P. (2014). 

Dual solutions of Casson fluid flow over a stretching or 

shrinking sheet. Sadhana, 39(6), 1573–1583. 

[11]. Lok, Y. Y., Amin, N., & Pop, I. (2006). Non-orthogonal 

stagnation point flow towards a stretching sheet. 

International Journal of Non-Linear Mechanics, 41(4), 622–

627.  

[12]. Megahed, A. M. (2015). Effect of slip velocity on 

Casson thin film flow and heat transfer due to unsteady 

stretching sheet in presence of variable heat flux and viscous 

dissipation. Applied Mathematics and Mechanics, 36(10), 

1273–1284.  

[13]. Mustafa, M., Hayat, T., Ioan, P., & Hendi, A. (2012). 

Stagnation-Point Flow and Heat Transfer of a Casson Fluid 

towards a Stretching Sheet. Zeitschrift Für Naturforschung 

A, 67(1–2), 70 – 76.  

[14]. Poply, V., Singh, P., & Chaudhary, K. K. (2013). 

Analysis of laminar boundary layer flow along a stretching 

cylinder in the presence of thermal radiation. Wseas 

Transactions on Fluid Mechanics, 8(4), 159-164. 

[15]. Poply, V., Singh, P., & Yadav, A. K. (2015). A Study 

of Temperature-dependent Fluid Properties on MHD Free 

Stream Flow and Heat Transfer over a Non-Linearly 

Stretching Sheet. Procedia Engineering, 127, 391–397.  

[16]. Poply, V., Singh, P., & Yadav, A. K. (2017). Stability 

analysis of MHD outer velocity flow on a stretching 

cylinder. Alexandria Engineering Journal, 57(3), 2077-2083. 

[17]. Sheikh, M., & Abbas, Z. (2015). Homogeneous and 

heterogeneous reactions in stagnation point flow of Casson 

fluid due to a stretching/shrinking sheet with uniform suction 

and slip effects. Ain Shams engineering Journal, 3(8), 467–

474. 

[18]. Siddheshwar, P. G., & Meenakshi, N. (2016). Effects of 

Suction and Freestream Velocity on a Hydromagnetic 

Stagnation-Point Flow and Heat Transport in a Newtonian 

Fluid Toward a Stretching Sheet. Journal of Heat Transfer, 

138(9), 494-501. 

[19]. Singh, P., Tomer, N. S., Kumar, S., & Sinha, D. (2010). 

MHD oblique stagnation-point flow towards a  stretching 

sheet with heat transfer. International Journal of Applied 

Mathematics and Mechanics, 6(13), 94-111. 

[20]. Singh, Phool, Jangid, A., Tomer, N. S., & Sinha, D. 

(2010). Effects of Thermal Radiation and Magnetic Field on 

Unsteady Stretching Permeable Sheet in Presence of Free 

Stream Velocity. International Journal of Information and 

Mathematical Sciences, 6(3), 160–166. 

[21]. Singh, P., Kumar, A., Tomer, N. S., & Sinha, D. (n.d.). 

Analysis of Porosity Effects on Unstead Stretching 

Permeable Sheet. Walailak Journal of Science and 

Technology (WJST), 11(7), 611–620. 

[22]. Singh, P., Tomer, N. S., Kumar, S., & Sinha, D. (2011). 

Effect of radiation and porosity parameter on 

magnetohydrodynamics flow due to stretching sheet in 

porous media. Thermal Science, 15(2), 517–526. 


