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Abstract: This article presents a higher-order parameter uniformly convergent method for a singularly
perturbed delay parabolic reaction-diffusion initial-boundary-value problem. For the discretization of the time
derivative, we use the Crank-Nicolson scheme on the uniform mesh and for the spatial discretization, we use the
central difference scheme on the Shishkin mesh, which provides a second order convergence rate. To enhance the
order of convergence, we apply the Richardson extrapolation technique. We prove that the proposed method
converges uniformly with respect to the perturbation parameter and also attains almost fourth order convergence
rate. Finally, to support the theoretical results, we present some numerical experiments by using the proposed

method.
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I. INTRODUCTION

In this article, we consider the following singularly
perturbed delay parabolic reaction-diffusion Initial-
Boundary-Value Problems (IBVP):

((aa—t + Ls,x) ux,t) = —=b(x, Hulx, t — ) + f(x,¢t),
(x, t) €D,

(L.1)
i u(x' t) = Hb (x' t), (x, t) € Fbl

L u(0,0) =6,(t) on I={0,0:0<t<T}
u(0,t) =6,(t) on I ={0,t):0<t<T}

where, L, ,u(x,t) = —gu,, (x,t) + a(x)u(x, t).

Here Q = (0, 1),D =0 X (O,T], I'= Fl V) Fb U Fr.Fb
and TI.are the left and the right sides of the rectangular
domain  Dcorresponding to x=0 andx=1,
respectively. T, =[0,1] X [-7,0]. Also, 0 < ¢ K 1
and 7 >0are given constants. The functions
a(x),b(x,t), f(x,t)on Dand 0, (x,t), 6,(0),
Or(t) onl, are sufficiently smooth, bounded functions
that satisfy, a(x) > =0,b(x,t) >0o0nD. The
terminal time Tis assumed to satisfy the condition
T =kt for some positive integer k. The required
compatibility conditions at the corner points and the
delay terms are 68,(0,0) = 6,(0),6,(1,0) = 6r(0),

and

de;(0)  0%6,(0,0)
T € Ep +a(0)6,(0,0)

= —b(0,0)6,(0,~7) + £(0,0),

do,(0 8%6,(1,0
;E ) . 5;2 ) 4 a()6,(1,0)
= —b(1,0)6,(1,—t) + f(1,0).

Under the above assumptions and compatibility
conditions, problem (1.1) admits a unique solution and
the solution exhibits boundary layers along x=0,
x=1(Ansari et. al.(2007); Kumar and Sekhara Rao
(2010)). One can refer (Farrel et. al.(2000); Bansal et.
al.(2015); Salama and Al-Amerya (2018); Govindarao
and Mohapatra (2018)) reference therein for more
details of singular perturbation.

There are few articles dealing with the theory and the
numerical methods for equation (1.1). Ansari et.
al.(Ansari et. al. (2007)) solved the singularly
perturbed delay parabolic reaction diffusion problem on
piecewise uniform Shishkin mesh. Das and Natesan.
(Das and Natesan (2018)) solved the delay parabolic
convection diffusion problem. But most of the methods
discussed above using finite difference schemes are of
first order or second order accurate. So there is a need
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of higher order accurate for (1.1).

Richardson extrapolation technique is one of post
processing technique used to provide a approximate
numerical solution and to increase the order of
convergence. This technique is used by Mohapatra and
Natesan (Mohapatra & Natesan (2008)) for solving
singularly perturbed delay two point BVPs while
Shishkin et. al. (Shishkinet. al. (2010)) applied this
idea to solve the parabolic reaction-diffusion equation.
The aim of this work is to provide a fourth order
convergent solution for (1.1) using the Richardson
extrapolation technique. First, we use the central
difference scheme for the spatial direction on Shishkin
mesh and the implicit Euler method for time direction
on uniform mesh. Here, we solve the problem (1.1)
with N and M number of subintervals in spatial and
temporal direction respectively, after that we solve
(1.1) with 2N and 4M number of subintervals. Then by

u” =6, (x,—¢),

(I + %lex)un+1 — %(_bn+1un—p+1_bnun—p + fn+1+fn) + (1 _

forj = 0,...,p,
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combining these two solutions properly, we enhance

the order of convergence from second order to fourth

order in spatial direction and first order to second order
in time direction.

I1. MATHEMATICAL MODEL AND
COMPUTATIONAL MODEL

On time domain [0, T], we use uniform mesh with time
stepAt,

QQ/I = {tn = TlAt,n = 0....M,tM: T; At = T/M}’
O ={t = jAt,j = 0....p,t, = 7, At = T/p},

where, M is number of mesh points in t-direction on the
interval [0, T] and p is the number of mesh points in [—, 0].
The step length Atsatisfies pAt = 7, where p is a positive
integer,t,= At,n = —p. To discretize the time variable for
(1.1), we use the Crank-Nicolson method, which is given by

X €D,

At

7L£_x)u", (21)

un+1(0) = Hl(tn+l)' un+1(1) = er(tn+1)t

where, " = f(x,t,),c" = c(x,t,), u" = u(x,t,) is the
semidiscrete approximation to the exactsolution u(x, t) of
(1.1) at the time level t,, = At.

I11. NUMERICAL APPROXIMATION

Here, we propose the numerical schemes to solve the
IBVP (1.1). We discretize the IBVP (1.1) using the
Crank-Nicolson scheme on a uniform mesh in time
direction and the central difference scheme on a
Shishkin mesh in the spatial direction. For the
construction of the Shishkin mesh, one may refer
(Miller et. al. (1996); Shishkin and Shishkina (2010)).

3.1 Spatial discretization

Let ‘o’ denotes a mesh transition parameter defined
byo = min {% pox/ElnN}, wherep, > % We divide

the domain Q = [0, 1] into three sub-domains as

Q= 0,U0.UQ,, whereQ, =0, c], Q. =(0, 1—
oland Q, = (1 -0, 1]. Weassumethat N = 2"
with » > 3 is the total number of subintervals in the
partitions of [0, 1]. We specify the mesh Q,, = {x; €
(0,1), i = 0,...,N}, where

4io for i= 0

N ori=0,...,,
o_rd-20) N N
i N B 0rl—4 ,...,4,

4o fori= —+1,...,N

N or i = — ... N.

We define the discretized domain DV = QY x Q¥onD,
'V =0l x QF onT. Note that, whenever o = i, the

mesh is uniform and on the other hand when o =
poVelnN the mesh is condensing near the boundaries
I, and T, herex; — x;,_; = 4oN~1. Consider the finite
difference approximation for (1.1) on domain QY.
Denote h; = x; — x;_;. Given a mesh function ¢;, the

J
backward and the central difference operators as:

o T G
Dx¢] - hj ! DxDx¢] _hj+hj+1 hj+1
Gin—@j—1nky.

Also define the backward difference operator in time

n_ n-1

by Dy ¢j" = Ut Ad;’ ,  where ¢/ = p(x;,t,).We
propose the following the numerical scheme to solve
IBVP (1.1), the Crank-Nicolson scheme for the time
derivative, and the central difference scheme for the

spatial derivatives, which is defined as:

2D; UM + LU = —pP Iyt P pryl P 4

fr+frtt — Lup, (3.1
here, L, U* = —eDiD U + a, U] f* = f(x;, ty,),
bl = c(x;, ty), a; = a(x;), fori = 1,2,...,N—1.

3.2 Fully discrete scheme

Using the scheme (2.1) and after rearranging the terms
in (3.1), the fully discrete scheme obtained is given by,

UMY + UM + P UR = 207,
U(r)H—1 = el(tn+1)' U6l+1 = gr(tn+1)'
Uy = 6,(x;,th41),forj=0,..,pandi =1,..,N — 1.

(3.2)
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Here,

( 2¢€
T‘l- = At i~
S

2¢
1l = At <_ﬁ + bi"+1> +1,

it

2¢&
ri+ =At|—=—],
\ h;h;

for 0 <i<N-—1g8=2(-pruf7 -

binlin—p+fintfint1+1-020in.

The difference equations (3.2), at each time level n+1
form a tri-diagonal system of N — lequations with
N — 1 unknowns. The tri-diagonal systems have the
following properties:

- <0,7?>0 rt<ofor i =1,...,N — 1.

These matrixes have the diagonal predominance with
respect to columns. Therefore, to solve the tri-diagonal
system, we use Thomas algorithm. For a brief detail of
Thomas algorithm and stability one can refer
(Mohapatra and Natesan (2008); Kumar and Sekhara
Rao (2010); Raji Reddy & Mohapatra (2015)).

Theorem 1

Let uand Ube the solutions of (1.1) and (3.1)
respectively, satisfying the compatibility conditions.
Then, the error of the finite difference scheme (3.1)
satisfies the following estimate

max; ,|(u — U)(x;, ty)l < C(N"1nN)? + At?),
fori = 1,...,N — 1, where

U(x;, t,) = U, for (x;,t,) € DV.

V. RICHARDSON EXTRAPOLATION
TECHNIQUE

To increase the accuracy of the numerical solutions of
the scheme, we use the Richardson extrapolation
technique. To apply the technique, we solve the
discrete problem (3.1) on the fine mesh D2V = Q2N x
QM. with 2N mesh intervals in the spatial direction
and 4M mesh intervals in the time direction, where
Q2N is a piecewise uniform Shishkin mesh having the
same transitions points as QY and obtained by bisecting
each mesh interval ofQY .

Clearly,

DN ={(x;,t,)} € D?N = {(%;,t,)}. Therefore, the
corresponding mesh the mesh isQY = {x; € (0,1),
i =0,...,2N}, where
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(Zi i =0 N/2

| N for i=0,..,N/2,
7 = i(1-20) __N_}_1 N/2
i N , for l—2 , ., N/
2i0 '—3N+1 N

N for i= 3 ,..,2N.

Let U(x;, t, )solutions of the discrete problems (3.1) on
the mesh D?Nusing the same transition point.
Therefore, we use the following extrapolation formula

1., —
Uext (xir tn) = 5(4‘U - u)(xi:tn)v for (xi: tn) €
DN (4.1)

Theorem 2

Let u be the solution of the continuous problem (1.1)
and U,,;be the solution obtained by the Richardson
extrapolation technique (4.1) by solving the discrete
problem (3.1) on two meshes D¥andD?N. Then we
havethe following error bound associated with U, :

max; , |(u = Ueye ) (x;, tn)| < C((N"HN)* + At?),
for i =1,...,N —1.

V. NUMERICAL RESULTS AND DISCUSSIONS

Example 5.1Consider the following singularly perturbed
delay parabolic IBVP:

U = e + P = 62 —u(x, ¢~ 1), (x 0 €0, DX (0, 2],
ulx,t)= 0, (x,t) €0, 1] x[-1, 0],
u(0,t) = 0,u(1,t) = 0, t €[0, 2].

(5.1)

The exact solution of (5.1) is unknown. To obtain the
pointwise errors and to verify the & —uniform convergence of
the proposed scheme, we use the double mesh principle. Let
U(x;, t,) be the numerical solution obtained on the fine
mesh D2V = 02V x (2Mwith 2Nmesh intervals in the spatial
direction and 2Mmesh intervals in thet-direction,
whereQ2Vis piecewise-uniform Shishkin mesh as like
QY with the same transition parameter. Now for each e, we
calculate the maximum point wise error by

EN,At

e = max
(xi, tn) epVN

|(U — T*NA0) (x;, tn)|

and the corresponding order of convergence by PNA!

N At
Eg
log, (EZN,At/Z)'
&

The numerical solution of (5.1) is plotted in Figure 1 for
various values of e.These figures confirm the existence of
boundary layers near x = O0and x = 1.The -calculated
maximum pointwise errors ENA' and the rate of
convergenceP"**for Example (5.1) by using central
difference scheme on space and the Crank-Nicolson scheme
on time scale is presented in Table 1. Clearly, it shows the
dominance of the time derivative and after extrapolation, the
rate of convergence is almost fourth order after
extrapolation.
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Table 1: EN**andPN** generated on S-mesh by using Crank-Nicolson scheme.

& Extrapolation Number of intervals N

32/10 64/40 128/160 256/640

le-2 Before 1.0812e-2 2.5746e-3 6.2981e-4 | 1.5515e-4 3.8465e-5
2.0702 2.0313 2.0212 2.0121

After 1.0917e-6 7.3444e-8 4.6717e-9 |2.9325e-10| 1.8348e-11
3.8939 3.9746 3.9937 3.9984

le-4 Before 9.0217e-3 3.3741e-3 1.1699e-3 | 3.9791e-4 1.2631e-4
1.4189 1.5281 1.5559 1.6554

After 3.3446e-4 5.1321e-5 6.2498e-6 | 5.5654e-7 3.6751e-8
2.7042 3.0377 3.4893 3.9206

le-6 Before 9.0217e-3 3.3741e-3 1.1699e-03 | 3.9791e-4 1.2631e-4
1.4189 1.5281 1.5559 1.6554

After 3.3446e-4 5.1321e-5 6.2498e-6 | 6.6720e-7 6.7088e-8
2.7042 3.0377 3.2276 3.3140

le-8 Before 9.0217e-3 3.3741e-3 1.1699e-3 | 3.9791e-4 1.2631e-4
1.4189 1.5281 1.5559 1.6554

After 3.3446e-4 5.1321e-5 6.2498e-6 | 6.6720e-7 6.7088e-8
2.7042 3.0377 3.2276 3.3140

10

Figure 1: Surface plots of the numerical solution for Example 5.1.
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