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Abstract: This article presents a higher-order parameter uniformly convergent method for a singularly 

perturbed delay parabolic reaction-diffusion initial-boundary-value problem. For the discretization of the time 

derivative, we use the Crank-Nicolson scheme on the uniform mesh and for the spatial discretization, we use the 

central difference scheme on the Shishkin mesh, which provides a second order convergence rate. To enhance the 

order of convergence, we apply the Richardson extrapolation technique. We prove that the proposed method 

converges uniformly with respect to the perturbation parameter and also attains almost fourth order convergence 

rate. Finally, to support the theoretical results, we present some numerical experiments by using the proposed 

method. 
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I. INTRODUCTION 
 

In this article, we consider the following singularly 

perturbed delay parabolic reaction-diffusion Initial-

Boundary-Value Problems (IBVP): 

 
  
 

  
  

𝜕

𝜕𝑡
+ 𝐿𝜀,𝑥 𝑢 𝑥, 𝑡 = −𝑏 𝑥, 𝑡 𝑢 𝑥, 𝑡 − 𝜏 + 𝑓 𝑥, 𝑡 ,

  𝑥,   𝑡 ∈ 𝐷,
 

𝑢 𝑥, 𝑡 = 𝜃𝑏 𝑥, 𝑡 ,     𝑥, 𝑡 ∈ Γ𝑏 ,

  𝑢 0, 𝑡 = 𝜃𝑙 𝑡          𝑜𝑛   Γ𝑙 =   0, 𝑡 : 0 ≤ 𝑡 ≤ 𝑇 ,   

𝑢 0, 𝑡 = 𝜃𝑙 𝑡        𝑜𝑛   Γ𝑙 =   0, 𝑡 : 0 ≤ 𝑡 ≤ 𝑇 ,      

 (1.1) 

where, 𝐿𝜀,𝑥𝑢 𝑥, 𝑡 = −𝜀𝑢𝑥𝑥  𝑥, 𝑡 + 𝑎 𝑥 𝑢 𝑥, 𝑡 . 

Here Ω =  0, 1 , 𝐷 = Ω ×  0, 𝑇 , Γ = Γ𝑙 ∪ Γ𝑏 ∪ Γ𝑟 . Γ𝑏  

and Γ𝑟are the left and the right sides of the rectangular 

domain 𝐷corresponding to 𝑥 = 0 and 𝑥 = 1, 

respectively. Γ𝑏 = [0, 1] × [−𝜏, 0]. Also, 0 <  𝜀 ≪  1 

and 𝜏 > 0 are given constants. The functions 

𝑎(𝑥), 𝑏(𝑥, 𝑡), 𝑓(𝑥, 𝑡) on 𝐷and 𝜃𝑏 𝑥, 𝑡 , 𝜃𝑙(𝑡),
𝜃𝑟(𝑡) onΓ, are sufficiently smooth, bounded functions 

that satisfy, 𝑎 𝑥 ≥ 𝛽 ≥ 0, 𝑏(𝑥, 𝑡)  > 0 on𝐷. The 

terminal time 𝑇is assumed to satisfy the condition 

𝑇 = 𝑘𝜏 for some positive integer k. The required 

compatibility conditions at the corner points and the 

delay terms are 𝜃𝑏(0, 0)  = 𝜃𝑙(0), 𝜃𝑏(1, 0)  =  𝜃𝑟(0), 

and  

𝑑𝜃𝑙 0 

𝑑𝑡
− 𝜀

𝜕2𝜃𝑏 0, 0 

𝜕𝑥2
+ 𝑎 0 𝜃𝑏 0, 0 

=  −𝑏 0, 0 𝜃𝑏 0,−𝜏  +  𝑓 0, 0 , 

 

𝑑𝜃𝑟 0 

𝑑𝑡
− 𝜀

𝜕2𝜃𝑏 1, 0 

𝜕𝑥2
+ 𝑎 1 𝜃𝑏 1, 0 

=  −𝑏 1, 0 𝜃𝑏 1,−𝜏  +  𝑓 1, 0 . 
Under the above assumptions and compatibility 

conditions, problem (1.1) admits a unique solution and 

the solution exhibits boundary layers along x=0, 

x=1(Ansari et. al.(2007); Kumar and Sekhara Rao 

(2010)). One can refer (Farrel et. al.(2000); Bansal et. 

al.(2015); Salama and Al-Amerya (2018); Govindarao 

and Mohapatra (2018)) reference therein for more 

details of singular perturbation. 

There are few articles dealing with the theory and the 

numerical methods for equation (1.1). Ansari et. 

al.(Ansari et. al. (2007)) solved the singularly 

perturbed delay parabolic reaction diffusion problem on 

piecewise uniform Shishkin mesh. Das and Natesan. 

(Das and Natesan (2018)) solved the delay parabolic 

convection diffusion problem. But most of the methods 

discussed above using finite difference schemes are of 

first order or second order accurate. So there is a need 
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of higher order accurate for (1.1). 

Richardson extrapolation technique is one of post 

processing technique used to provide a approximate 

numerical solution and to increase the order of 

convergence. This technique is used by Mohapatra and 

Natesan (Mohapatra & Natesan (2008)) for solving 

singularly perturbed delay two point BVPs while 

Shishkin et. al. (Shishkinet. al. (2010)) applied this 

idea to solve the parabolic reaction-diffusion equation. 

The aim of this work is to provide a fourth order 

convergent solution for (1.1) using the Richardson 

extrapolation technique. First, we use the central 

difference scheme for the spatial direction on Shishkin 

mesh and the implicit Euler method for time direction 

on uniform mesh. Here, we solve the problem (1.1) 

with 𝑁 and 𝑀 number of subintervals in spatial and 

temporal direction respectively, after that we solve 

(1.1) with 2𝑁 and 4𝑀 number of subintervals. Then by 

combining these two solutions properly, we enhance 

the order of convergence from second order to fourth 

order in spatial direction and first order to second order 

in time direction. 

II. MATHEMATICAL MODEL AND 

COMPUTATIONAL MODEL 
On time domain [0, T], we use uniform mesh with time 

stepΔ𝑡, 
 

Ω𝑡
𝑀 =  {𝑡𝑛  =  𝑛Δ𝑡, 𝑛 =  0. . . . 𝑀, 𝑡𝑀 =  𝑇, Δ𝑡 =  𝑇/𝑀}, 

 

Ω𝑡
𝑝

= {𝑡𝑗 =  𝑗Δ𝑡, 𝑗 =  0. . . . 𝑝, 𝑡𝑝  =  𝜏, Δ𝑡 =  𝜏/𝑝}, 

 

where, M is number of mesh points in t-direction on the 

interval [0, T] and p is the number of mesh points in [−𝜏, 0]. 

The step length Δ𝑡satisfies 𝑝Δ𝑡 = 𝜏, where 𝑝 is a positive 

integer,𝑡𝑛= Δ𝑡, 𝑛 ≥  −𝑝. To discretize the time variable for 

(1.1), we use the Crank-Nicolson method, which is given by 

 

 

u−𝑗 = 𝜃𝑏 𝑥, −𝑡𝑗 ,        for j =  0, . . . , p,     x ∈ D ,                  

 𝐼 +
Δ𝑡

2
𝐿𝜀,𝑥 𝑢

𝑛+1 =
Δ𝑡

2
 −𝑏𝑛+1𝑢𝑛−𝑝+1−𝑏𝑛𝑢𝑛−𝑝 + 𝑓𝑛+1+𝑓𝑛 +  𝐼 −

Δ𝑡

2
𝐿𝜀,𝑥 𝑢

𝑛 ,                                      

𝑢𝑛+1 0 = 𝜃𝑙 𝑡𝑛+1 ,   𝑢
𝑛+1 1 = 𝜃𝑟 𝑡𝑛+1 ,                   

 (2.1) 

 

where, 𝑓𝑛 =  f(𝑥, 𝑡𝑛),𝑐𝑛 =  c(𝑥, 𝑡𝑛), 𝑢𝑛 =  u(𝑥, 𝑡𝑛) is the 

semidiscrete approximation to the exactsolution u(𝑥, t) of 

(1.1) at the time level 𝑡𝑛 = Δ𝑡. 

III. NUMERICAL APPROXIMATION 
 

Here, we propose the numerical schemes to solve the 

IBVP (1.1). We discretize the IBVP (1.1) using the 

Crank-Nicolson scheme on a uniform mesh in time 

direction and the central difference scheme on a 

Shishkin mesh in the spatial direction. For the 

construction of the Shishkin mesh, one may refer 

(Miller et. al. (1996); Shishkin and Shishkina (2010)). 

3.1 Spatial discretization 

Let ‘𝜎’ denotes a mesh transition parameter defined 

by𝜎 = 𝑚𝑖𝑛  
1

4
,   𝜌0 𝜀𝑙𝑛𝑁 , where𝜌0 ≥

2

𝛽
. We divide 

the domain Ω =  [0, 1]  into three sub-domains as   

Ω =  Ω𝑙    ⋃Ω𝑐    ⋃ Ω𝑟    , where Ω𝑙 = (0, 𝜎 ],  Ω𝑐 = ( 𝜎, 1 −
𝜎] and  Ω𝑟 = (1 − 𝜎, 1]. We assume that 𝑁 =  2𝑟  

with 𝑟 ≥  3 is the total number of subintervals in the 

partitions of [0, 1]. We specify the mesh Ω𝑥 =  {𝑥𝑖 ∈
 (0, 1), 𝑖 =  0, . . . , 𝑁}, where 

𝑥𝑖 =

 
 
 

 
 

4𝑖𝜎

𝑁
,                 for  𝑖 =  0, . . . ,

N

4
,

2𝑖 1 − 2𝜎 

𝑁
,    for  𝑖 =

N

4
+ 1, . . . ,

N

4
,

4𝑖𝜎

𝑁
,           for  𝑖 =  

3N

4
+ 1, . . . , N.

  

We define the discretized domain 𝐷𝑁 = Ω𝑥
𝑁 × Ω𝑡

𝑀on𝐷, 

Γ𝑁 = Ω𝑥
𝑁 × Ω𝑡

𝑝
 𝑜𝑛 Γ. Note that, whenever 𝜎 =

1

4
, the 

mesh is uniform and on the other hand when 𝜎 =

𝜌0 𝜀𝑙𝑛𝑁,the mesh is condensing near the boundaries 

Γ𝑙  and Γ𝑟 , here𝑥𝑖 − 𝑥𝑖−1 = 4𝜎𝑁−1. Consider the finite 

difference approximation for (1.1) on domain Ω𝑥
𝑁 . 

Denote 𝑕𝑗  = 𝑥𝑗 − 𝑥𝑗−1. Given a mesh function 𝜙𝑗 , the 

backward and the central difference operators as: 

D𝑥
−𝜙𝑗

𝑛 =
𝜙𝑗
𝑛−𝜙𝑗−1

𝑛

𝑕𝑗
, D𝑥

+D𝑥
−𝜙𝑗

𝑛 =
2

𝑕𝑗+𝑕𝑗+1
 
𝜙𝑗+1
𝑛 −𝜙𝑗

𝑛

𝑕𝑗+1
−

𝜙𝑗𝑛−𝜙𝑗−1𝑛𝑕𝑗. 

Also define the backward difference operator in time 

by D𝑡
−𝜙𝑗

𝑛 =
𝜙𝑗
𝑛−𝜙𝑗

𝑛−1

Δ𝑡
, where 𝜙𝑗

𝑛 = 𝜙(𝑥𝑖 , 𝑡𝑛).We 

propose the following the numerical scheme to solve 

IBVP (1.1), the Crank-Nicolson scheme for the time 

derivative, and the central difference scheme for the 

spatial derivatives, which is defined as: 

2D𝑡
−𝑈𝑖

𝑛+1 + 𝐿𝜀𝑈𝑖
𝑛+1 = −𝑏𝑖

𝑛+1𝑈𝑖
𝑛−𝑝+1

− 𝑏𝑖
𝑛𝑈𝑖

𝑛−𝑝
+

𝑓𝑖
𝑛+𝑓𝑖

𝑛+1 − 𝐿𝜀𝑈𝑖
𝑛 ,              (3.1) 

here, 𝐿𝜀𝑈𝑖
𝑛 = −𝜀D𝑥

+D𝑥
−𝑈𝑖

𝑛 + a𝑖𝑈𝑖
𝑛 ,𝑓𝑖

𝑛 =  f(𝑥𝑖 , 𝑡𝑛), 

𝑏𝑖
𝑛 =  c(𝑥𝑖 , 𝑡𝑛), a𝑖 =  a 𝑥𝑖 , for 𝑖 =  1, 2, . . . , 𝑁 − 1. 

3.2 Fully discrete scheme 

Using the scheme (2.1) and after rearranging the terms 

in (3.1), the fully discrete scheme obtained is given by, 

 

𝑟𝑖
−𝑈𝑖−1

𝑛+1 + 𝑟𝑖
𝑜𝑈𝑖

𝑛+1 + 𝑟𝑖
+𝑈𝑖

𝑛+1 = 2𝑔𝑖
𝑛 ,                                         

𝑈0
𝑛+1 = 𝜃𝑙 𝑡𝑛+1 ,   𝑈0

𝑛+1 = 𝜃𝑟 𝑡𝑛+1 ,                                      

𝑈0
−𝑗

= 𝜃𝑙 𝑥𝑖 , 𝑡𝑛+1 , for 𝑗 = 0,… , 𝑝, and 𝑖 = 1,… , 𝑁 − 1.  

  

(3.2) 
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Here, 

 
 
 
 

 
 
 𝑟𝑖

− = Δ𝑡  −
2𝜀

𝑕 𝑖h𝑖
 ,                   

𝑟𝑖
𝑜 = Δ𝑡  −

2𝜀

𝑕 𝑖h𝑖
+ 𝑏𝑖

𝑛+1 + 1,

𝑟𝑖
+ = Δ𝑡  −

2𝜀

𝑕 𝑖h𝑖
 ,                   

  

for  0 <  𝑖 ≤ 𝑁 − 1,𝑔𝑖
𝑛 =

Δ𝑡

2
 −𝑏𝑖

𝑛+1𝑈𝑖
𝑛−𝑝+1

−

𝑏𝑖𝑛𝑈𝑖𝑛−𝑝+𝑓𝑖𝑛+𝑓𝑖𝑛+1+1−Δ𝑡2𝑈𝑖𝑛. 

The difference equations (3.2), at each time level n+1 

form a tri-diagonal system of 𝑁 − 1equations with 

𝑁 −  1 unknowns. The tri-diagonal systems have the 

following properties: 

  𝑟𝑖
− < 0, 𝑟𝑖

𝑜 > 0,   𝑟𝑖
+ < 0, for   𝑖 =  1, . . . , 𝑁 −  1.  

These matrixes have the diagonal predominance with 

respect to columns. Therefore, to solve the tri-diagonal 

system, we use Thomas algorithm. For a brief detail of 

Thomas algorithm and stability one can refer 

(Mohapatra and Natesan (2008); Kumar and Sekhara 

Rao (2010); Raji Reddy & Mohapatra (2015)). 

 

Theorem 1 

Let 𝑢and 𝑈be the solutions of (1.1) and (3.1) 

respectively, satisfying the compatibility conditions. 

Then, the error of the finite difference scheme (3.1) 

satisfies the following estimate 

max𝑖,𝑛  (𝑢 − 𝑈)(𝑥𝑖 ,  𝑡𝑛) ≤ 𝐶  𝑁−1𝑙𝑛𝑁 2 + Δ𝑡2 , 
for𝑖 =  1, . . . , 𝑁 − 1, where 

𝑈 𝑥𝑖 ,  𝑡𝑛 =  𝑈𝑖
𝑛 ,   for  𝑥𝑖 , 𝑡𝑛 ∈ 𝐷𝑁 . 

 

IV. RICHARDSON EXTRAPOLATION 

TECHNIQUE 
To increase the accuracy of the numerical solutions of 

the scheme, we use the Richardson extrapolation 

technique. To apply the technique, we solve the 

discrete problem (3.1)  on the fine mesh 𝐷2𝑁 = Ω𝑥
2𝑁 ×

Ω𝑡
4𝑀 . with 2𝑁 mesh intervals in the spatial direction 

and 4𝑀 mesh intervals in the time direction, where 

Ω 𝑥
2𝑁   is a piecewise uniform Shishkin mesh having the 

same transitions points as Ω 𝑥
𝑁 and obtained by bisecting 

each mesh interval ofΩ 𝑥
𝑁.  

Clearly, 

𝐷𝑁 =  (𝑥𝑖 , 𝑡𝑛) ⊂ 𝐷2𝑁 =  (𝑥 𝑖 , 𝑡 𝑛) . Therefore, the 

corresponding mesh the mesh isΩ 𝑥
𝑁 =  {𝑥 𝑖  ∈  (0, 1),

𝑖 =  0 , . . . , 2𝑁}, where 

𝑥 𝑖 =

 
 
 

 
 

2𝑖𝜎

𝑁
,                         𝑓𝑜𝑟   𝑖 = 0,… ,𝑁/2,

𝑖 1 − 2𝜎 

𝑁
,          𝑓𝑜𝑟    𝑖 =

𝑁

2
+ 1,… ,𝑁/2

2𝑖𝜎

𝑁
,               𝑓𝑜𝑟  𝑖 =

3𝑁

2
+ 1,… ,2𝑁.

  

 

Let 𝑈  𝑥 𝑖 ,  𝑡 𝑛 solutions of the discrete problems (3.1) on 

the mesh 𝐷2𝑁using the same transition point. 

Therefore, we use the following extrapolation formula 

 𝑈𝑒𝑥𝑡  𝑥𝑖 ,  𝑡𝑛 =
1

3
 4𝑈 − 𝑢 (𝑥𝑖 , 𝑡𝑛),   for (𝑥𝑖 ,  𝑡𝑛)  ∈

𝐷𝑁 .(4.1) 

 

Theorem 2 

 

Let u be the solution of the continuous problem (1.1) 

and  𝑈𝑒𝑥𝑡 be the solution obtained by the Richardson 

extrapolation technique (4.1) by solving the discrete 

problem (3.1) on two meshes 𝐷𝑁and𝐷2𝑁. Then we 

havethe following error bound associated with  𝑈𝑒𝑥𝑡 : 

max𝑖,𝑛   𝑢 –  𝑈𝑒𝑥𝑡   𝑥𝑖 , 𝑡𝑛  ≤ 𝐶  𝑁−1𝑙𝑛𝑁 4 + Δ𝑡4 , 

for    𝑖 =  1, . . . , 𝑁 − 1. 
 

V. NUMERICAL RESULTS AND DISCUSSIONS 
 

Example 5.1Consider the following singularly perturbed 

delay parabolic IBVP: 

 
𝑢𝑡 − 𝜀𝑢𝑥𝑥 +

 1+𝑥 2

2
𝑢 = 𝑡3 − 𝑢 𝑥, 𝑡 − 1 ,  𝑥, 𝑡 ∈  0, 1 ×  0, 2 ,

𝑢 𝑥, 𝑡 =  0,    𝑥, 𝑡 ∈  0, 1 ×  −1, 0 ,                                                      

𝑢 0, 𝑡 =  0, 𝑢 1, 𝑡 =  0, 𝑡 ∈  0, 2 .                                                          

     

(5.1) 

 

The exact solution of (5.1) is unknown. To obtain the 

pointwise errors and to verify the 𝜀 –uniform convergence of 

the proposed scheme, we use the double mesh principle. Let 

𝑈  𝑥𝑖 ,  𝑡𝑛  be the numerical solution obtained on the fine 

mesh 𝐷 2𝑁 = Ω 𝑥
2𝑁 × Ω 𝑡

2𝑀with 2𝑁mesh intervals in the spatial 

direction and 2𝑀mesh intervals in the𝑡-direction, 

whereΩ𝑥
2𝑁is piecewise-uniform Shishkin mesh as like 

Ω𝑥
𝑁with the same transition parameter. Now for each 𝜀, we 

calculate the maximum point wise error by 

 

𝐸𝜀
𝑁,Δ𝑡 = max

(𝑥𝑖 , 𝑡𝑛 ) ∈𝐷𝑁
 (𝑈 − 𝑈 2𝑁,Δ𝑡)(𝑥𝑖 , 𝑡𝑛)  

 

and the corresponding order of convergence by 𝑃𝜀
𝑁,Δ𝑡 =

𝑙𝑜𝑔2  
𝐸𝜀
𝑁 ,Δ𝑡

𝐸𝜀
2𝑁,Δ𝑡/2 . 

 

The numerical solution of (5.1) is plotted in Figure 1 for 

various values of 𝜀.These figures confirm the existence of 

boundary layers near 𝑥 =  0and 𝑥 =  1.The calculated 

maximum pointwise errors 𝐸𝜀
𝑁,Δ𝑡

 and the rate of 

convergence𝑃𝜀
𝑁,Δ𝑡

for Example (5.1) by using central 

difference scheme on space and the Crank-Nicolson scheme 

on time scale is presented in Table 1. Clearly, it shows the 

dominance of the time derivative and after extrapolation, the 

rate of convergence is almost fourth order after 

extrapolation. 
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Table 1: 𝐸𝜀
𝑁,Δ𝑡

and𝑃𝜀
𝑁,Δ𝑡

generated on S-mesh by using Crank-Nicolson scheme. 

 

𝜺 Extrapolation Number of intervals N 

  32/10 64/40 128/160 256/640  

1e-2 Before 1.0812e-2 

2.0702 

2.5746e-3 

2.0313 

6.2981e-4 

2.0212 

1.5515e-4 

2.0121 

3.8465e-5 

After 1.0917e-6 

3.8939 

7.3444e-8 

3.9746 

4.6717e-9 

3.9937 

2.9325e-10 

3.9984 

1.8348e-11 

1e-4 Before 9.0217e-3 

1.4189 

3.3741e-3 

1.5281 

1.1699e-3 

1.5559 

3.9791e-4 

1.6554 

1.2631e-4 

After 3.3446e-4 

2.7042 

5.1321e-5 

3.0377 

6.2498e-6 

3.4893 

5.5654e-7 

3.9206 

3.6751e-8 

1e-6 Before 9.0217e-3 

1.4189 

3.3741e-3 

1.5281 

1.1699e-03 
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Figure 1: Surface plots of the numerical solution for Example 5.1. 
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