

International Journal of Advanced Trends in Computer Applications

www.ijatca.com

A Review: Artificial Vision

¹Vishal, ²Rohini Sharma

¹Student

Department of CSE

Chandigarh University, Gharuan

²Assistant Professor

Department of CSE

Chandigarh University, Gharuan

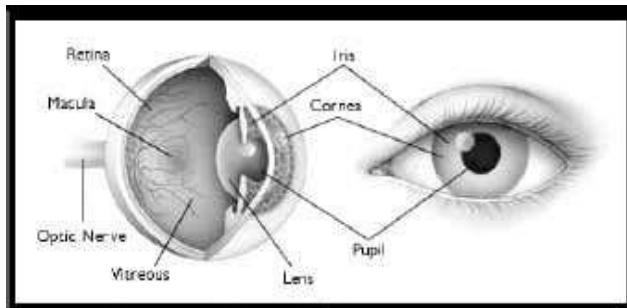
¹19bcs1451@gmail.com, ²rohinie7721@cumail.in

Abstract: India is now the habitat of the first number of unsighted people in the humankind. Of the 37 million citizens all over the world, 15 million unsighted people approach India. 75% of these are cases of escapable unsightedness. On the further hand, while our nation must donate 2.5 million eyes every year, the nation's 109 eye banks, where 5 located in Delhi manage to accumulate a maximum of only 25,000 eyes, of that 30% cannot be used. . In the meantime, the shortage of donated eyes is becoming a big dilemma. In 15 million unsighted people in India, three million, 26% of whom are descendants with corneal disorder. However only 10,000 corneal relocates are performed every year due to the reason of donated eye deficiency. The target of the bionic eye is to re-establish fundamental visual cues for people with ocular circumstances such as retinitis pigmentosa that is an inherited state of the eye. A video camera seated on a pair of lenses will attain and advance the images. These images are shipped wirelessly to a bionic implant in the rear of the eye that excites the immobile optic nerves to generate points of illume (phosphenes) that form the basis of the images in the brain. Therefore, even unsighted people can have perception. The eye is a complex optical system that, like other organs, can be harmed due to infection or harm. Therefore, several prostheses have been planned to allow these people to reclaim their vision and relish a full life. This document refers chiefly to the cornea, but also covers the iris and intention. Since someone else was researching artificial retinas, this won't be covered. The truth is, I really wanted to cover it up, since there is a lot of progress in that field while I was still in diapers.

Keywords: Bionic Eye, Artificial silicon retina, Implementation.

I. INTRODUCTION

Biotechnology has developed into the fastest growing section of scientific research, over inventions of fresh devices. The retina is a emaciated layer of neural tissue that lines the posterior well contained by the eye. Many of these cells work to attain illume, while others infer intelligence and messages from the brain over the optic nerve. This is a fraction of the advance that allows us to see. The eye is made up of many parts.


Sclera: most of the eye forms the white shell and the basic shape of the eyeball. Cornea: the front 1/6 of the eye surface also acts as the main curvature of the eye. It has a refractive index of 1,376. • Aqueous humor: the liquid that separates the cornea from the target. It has a refractive index of 1.336. Lens: together with the iris, it forms an opening stop for the eye that adjusts itself by expanding and contracting. It has a refractive index that ranges from 1,386 to 1,406. Iris: together with the

lens, it constitutes an opening end of the eye. Opaque. Vitreous body: the fluid that fills the room inside the sclera. It has a refractive index of 1.337. Retina: in the rear of the eye, it alters the focused images of the additional rudiments into electrical signals that are shipped to the brain.

II. THE HUMAN EYE

We can see why the brightness of an entity can move over zone and arrive our eyes. Once the illume arrives our eyes, the signals are shipped to our brain and our brain decrypts the intelligence to detect the appearance, position and faction of the objects we are seeing. The whole advance, however complex, would not be promising if it exist not for the existence of illume. Lacking illume, there is no humanity, the human eye is the limb that gives us the perception of sight, it allows us to know the world close to all the other senses. The

retina is located in the rear of the eye and acts as if the film from a camera acts to receive and advance everything. The eyeball is reshipped in a cone-shaped protective cavity in the skull called an orbit or cavity and has a diameter of about an inch. The orbit is covered with layers of spongy adipose tissue that protects the eye and allows it to rotate easily. The important part of an eye is the retina. The retina is positioned in the rear of the eye and acts as if the moving image of a camera acts to attain and advance everything.

Figure 1: Human Eye

III. THE BIONIC EYE

Bionic Eye is an unnatural eye that causes an imaging environment in the brain by directly exciting various parts of the optic nerve. The bionic eye is made up of electronic systems made up of image sensors, advancers, receivers, radio transmitters and retina chips. [2] There are also other experimental implants that can excite ganglion cells in the retina or visual cortex of the brain. Technology made its way over a bionic eye to allow unsighted people to see again.

Figure 2: Bionic Eye

It consists of a computer chip that is held behind the individual's eye, connected by a mini video camera integrated into the glasses he wears. The images captured by the camera are transmitted to the chip that translates them into impulses that the brain can interpret. Although the images produced by the artificial eye exist far from perfect, they could be clear enough to allow someone who was otherwise unsighted

to recognize the face. Advancement is likely to benefit patients with the most common cause of unsightedness, macular degeneration that affects 500,000 people [4]. This occurs when damage occurs to the macula that is located in the central misperception of the retina, where the glow is concentrated and interrupted by nerve signals in the center of the brain. The implant prevents contaminated cells in the retina and excites the remaining practical cells.

IV. FUNCTIONING OF THE BIONIC IMPLANT

A bionic eye implant that could help refresh the perception of millions of people without perception could be available to patients. This device has a width of 2 millimeters and contains approximately 3,500 micro photodiodes positioned after the retina, this collection of miniature solar cells is designed to break normalcy. Illume to electrical signals that are then transmitted to the brain by the remaining healthy parts of the retina. A Belgian device has a coil that covers the optic nerve, with only four electrical contact points. By changing the phase and varying the intensity of the signals, the coil can excite different parts of the optic nerve, similar to the way electronic guns on teleperceptions hit different parts of the screen. The video signals emit an external camera and are transmitted to the implant over a radio antenna and a microchip under the skin, right behind the ear. Microchip implants, smaller than the head of a pin and about half the thickness of a sheet of paper have been used to eliminate unsightedness.

The eye position monitor monitors the orientation of the camera. If the camera is not seated on the head, compensation for head movement will be required. Finally, if a retinal prosthesis receives energy and input signals from outside the eye over an IR beam that penetrates the pupil, the transmitter must be aligned with the intraocular chip. The beam performed two functions: one is to send energy and the other is to send pulses or amplitude modulation to transmit image data. Using eye movement control, the main camera for each eye can rotate in any direction. Each of these cameras, located just outside users' field of perception to avoid blocking any peripheral perception they may have, captures the image of the outside world and transmits intelligence over an optical fiber to a signal advancing computer that is used on the body. The Argus II system uses a telescope-seated camera that is used to send intelligence to the electrodes in the eyes. Patients who tried fewer advanced retinal implant versions exist able to see illume, shape and movement. The goal of the bionic eye is to get real-time images from a camera and

convert them into a minute of electric shock that unsighted eyes see.

4.1 The camera that is implanted in the glasses helps to see the image.

4.2 The signals are shipped to the portable device.

4.3 The intelligence you have advanced is returned to the glasses and transmitted wirelessly to the receiver below the surface of the eye.

4.4 The receiver sends intelligence to the electrodes on the retina implant.

4.5 The electrodes excite the retina to send intelligence to the brain, while retinal implants can partially restore the perception of people with particular unsightedness caused by diseases such as macular degeneration or retinitis pigmentosa. Millions of people around the world have retinitis pigmentosa and one in ten people over the age of fifty-five have age-related macular degeneration. Both diseases gradually reduce the retinal illume advancing cells in the rear of the eye. The fresh device invented the work by implanting a series of small electrodes in the rear of the retina. A camera is used to confine images prepared by a standard sized handheld advance or and worn on a belt that allows you to convert visual intelligence into electrical signals. They are then shipped rear to the glasses and remotely to a receiver just below the plane of the front of the eye, that in turn feeds them to the electrodes on the rear.

- Growth points First generation low resolution devices have already been installed for six patients.

- Changing the brain: The fresh implant has a higher resolution than previous devices, with 60 electrodes.

V. RETINAL PROSTHESIS SYSTEM

Second Sight Medical has just received the Research Device Exemption (IDE) from the USFDA to begin clinical trials for its Argus II retinal prosthesis system. In Second Sight, the retinal prosthesis uses a series of electrodes to excite the retina. Restores a low level of perception in patients with degenerative diseases. His first implant had sixteen electrodes; The fresh Argus II has 60 electrodes. The Argus II implant consists of a series of electrodes connected to the retina and used with an external camera and a video advancing system to provide a rudimentary view to the implanted subjects. An IDE test is underway for the first generation implant (Argus TM 16), that has sixteen electrodes, at the Doheny Eye Institute of the University of Southern California. The Argus 16 was

implanted in six patients between 2002 and 2004 and allowed them to detect when the illumes are on or off, recognize the movement of an object, count the elements, as well as identify and differentiate the basic objects in the environment. The fresh generation Argus II retinal stimulator is designed with 60 controllable electrodes that should provide implanted subjects with higher resolution images. Second Sight remains the only manufacturer with an actively and actively implantable retinal prosthesis in a clinical trial in the United States and the technology represhippeds the largest number of electrodes for such a device anywhere in the world.

CERAMIC PHOTOCELLS Scientists from the Zone Vacuum Epitaxy Center (SVEC) [9] set up at the University of Houston, Texas, use a fresh material, including small ceramic photocells that identify internal illume and restore human eye degradation. SVEC scientists are conducting preliminary tests on the biocompatibility of this ceramic detector. The artificial retinas built by SVEC are made up of 1,00,000 small ceramic detectors, each 20 percent the size of a human hair. The group is so small that surgeons cannot handle it safely. The matrices are tied to a polymer film the size of a millimeter. After insertion into an eyeball, the polymer film will dissolve simply leaving only the matrix after a couple of weeks.

VI. ADVANTAGES

- 6.1 Helps correct perception.
- 6.2 It is not necessary to undergo long and short screens.
- 6.3 It can be easily implanted.
- 6.4 It is approved by the FDA.

VII. DISADVANTAGES

There are 120 million rods and 6 million cones within the retina of every healthy and friendly human eye.

- 7.1 Creating an artificial substitute for these is a risky endeavor.
- 7.2 Si-based photo detectors have been tested in previous attempts. But Si is toxic to the human body and reacts unfavorably with the fluids in the eyes.
- 7.3 It costs around \$ 30,000
- 7.4 It will not work for glaucoma patients.

References

- [1]. K. Pradeep, K. Vasantha Kokilam and C. Sunitha,"Artificial Eye A review", National Conference on Fresh Horizons in IT – NCNHIT 2013, ISBN 978 93-82338-79-

6, 2013.

- [2]. Deeksha H N, Sandeep S, "Bionic Eye Technology: An Advanced Version of Artificial Vision", Academia, Volume 2, Issue 7, July, 2012.
- [3]. M.S Humayun, J.D Weiland, G.Chader, "Basic research, biomedical engineering and clinical advances", 2007, pp. 151-206.
- [4]. Asher,A.;Segal,W.A.;Baccus,S.A.;Yaroslavsky,L.P.;Pal anker,D.V., "Imageprocessing for A High-Resolution Optoelectronic Retinal Prosthesis", IEEE transactions on Biomedical Engineering, vol. 54, no. 6, pp. 993-1004, June 2007.
- [5]. Ashley Hall, "Diamond shines as basis for bionic eye prototype", ABC News, December 09, 2010.

Author Profile

Vishal completed his schooling in 2017 with 96% in boards, then he choose field of computer science in Chandigarh University because he always has been interested in computer technologies and new developments coming in this field and keeping a vigilant eye on all new ideas and research behind it which encouraged me too to research on a topic that could help the world. He is always wondered from his childhood how the Google assistant knows so much and understands everyone's language and accent in simple way growing my interest in artificial intelligence field of computer science. And that's why he wanted to do research or bring an idea into existence that would be an amalgamation of both artificial intelligence and the human need.

Rohini Sharma received the B.tech and M.tech degrees in Computer Science & Engineering from Punjab Technical University in 2008 and 2015, respectively. She is having teaching experience of 11 years as an Assistant Professor. She published 10 research papers in different area earlier. She always motivates her students for research work.