Biometric Fusion combined multiple data from multiple sources so that accuracy, efficiency and robustness of a biometric system can be improved. Multimodal biometric systems perform better than uni-modal biometric systems as it removes the limitations of single biometric system. In this review paper, different feature extraction algorithms (PCA, ICA) are discussed along with GA (Genetic Algorithm).
Shashi Kumar D R, K B Raja, R. K Chhootaray, SabyasachiPattnaik, 2011. PCA based Iris Recognition using DWT. Int. J. Comp. Tech. Appl. , vol 2 (4), pp. 884-893
M. Ramya, A. Muthukumar and S. Kannan,2012, “Multibiometric based authentication using feature level fusion”.IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM -2012), March 30, 31.
Jen-TzungChien,“A new independent component analysis for speech recognition and separation”, IEEE, Page(s) 1245 – 1254 , July 2006
DapinderKaur , “ Level of Fusion in Multimodal Biometrics: a Review” , International. Journal of Advanced Research in Computer Science and Software Engineering ,Volume-3,Issue 2, February 2013.
MohamadAbdolahi,(et.al), “Multimodal Biometric system Fusion Using Fingerprint and Iris with Fuzzy Logic” , International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-6, January 2013.
ArunRoss(et.al) , “Feature Level Fusion in Biometric Systems” ,pp.1-2.
Ricardo N. Rodrigues , “Robustness of multimodal biometric fusion methods against spoof attacks” Journal of Visual Languages and Computing,2011,pp.1-11.
Daniela Sánchez, , Patricia Melin, “Modular Neural Network with Fuzzy Integration and Its Optimization Using Genetic Algorithms for Human Recognition Based on Iris, Ear and Voice Biometrics” , IEEE, Volume 312, 2010, pp 85-102
Daugman, J.G.: High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Trans. on Pattern Analysis and Machine Intelligence15(11), 1148–1161 (1993)
Sarhan, A.: Iris Recognition Using Discrete Cosine Transform and Artificial Neural Networks. Department of Computer Engineering, University of Jordan, Amman- 11195, Jordan (2009)
Carreira, M.: Aplicación de lasredesneuronales de compresión a la extraccióndecaracterísticaspara el reconocimiento a partir de imágenes de la oreja, Universidad Politécnicade Madrid, España (Septiembre 1995)
Saleh, M.: Using Ears as a Biometric for Human Recognition, Arab Academy for Science and Technology and Maritime Transport, Cairo, Egypt (Septiembre 2006)
Ali, M., Javed, M., Basit, A.: Ear Recognition Using Wavelets., Department of Computer Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Peshawar Road, Rawalpindi, 46000, Pakistan((2007)
Nageshkumar.M(et,al),“An Efficient Secure Multimodal Biometric Fusion Using Palmprint and Face Image”,International Journal of Computer Science Issues,2009.
LeninaBirgale and M. Kokare, 2010, “Iris Recognition without Iris Normalization”, Journal of Computer Science 6, pp. 1042-1047.
Min-LunLan, “ Genetic Algorithm to Improve the Performance of Speech Recognition Basedon Artificial Neural Network”, Aug. 30 2006-Sept. 1 2006Page(s):527 – 530
YunhongWang , “Combining face and Iris Biometrics for Identity Verification” .
NazmeenBibiBoodoo*, R K Subramanian, “Robust Multi-biometric Recognition Using Face and Ear Images, (IJCSIS) International Journal of Computer Science and Information Security,Vol. 6, No. 2, 2009
Parul Shah, Shabbir N. Merchant, UdayB.Desai “An Efficient Adaptive Fusion SchemeforMultifocus Images in Wavelet DomainUsing Statistical Properties of Neighborhood,”14th International Conference Information Fusion Chicago, Illinois,USA, July 5-8, 2011.
K.Sasidhar(et.al ), “Multimodal Biometric system-study to improve accuracy and performance”, International Journal of Computer Science & Engineering Survey (IJCSES) Vol.1, No.2, November 2010
GA (Genetic algorithm), DWT (Discrete wavelet transform), PCA (Principal Component Analysis), ICA (Independent component analysis), GA (Genetic Algorithm).